An Application of the Ornstein-Uhlenbeck Process to Pairs Trading
ArXiv ID: 2412.12458 “View on arXiv”
Authors: Unknown
Abstract
We conduct a preliminary analysis of a pairs trading strategy using the Ornstein-Uhlenbeck (OU) process to model stock price spreads. We compare this approach to a naive pairs trading strategy that uses a rolling window to calculate mean and standard deviation parameters. Our findings suggest that the OU model captures signals and trends effectively but underperforms the naive model on a risk-return basis, likely due to non-stationary pairs and parameter tuning limitations.
Keywords: Pairs Trading, Ornstein-Uhlenbeck Process, Statistical Arbitrage, Mean Reversion, Stationarity
Complexity vs Empirical Score
- Math Complexity: 6.5/10
- Empirical Rigor: 4.0/10
- Quadrant: Lab Rats
- Why: The paper employs advanced stochastic calculus and econometric testing (cointegration, OU process SDEs), but the empirical validation is preliminary, using a limited dataset without robust out-of-sample testing or risk management refinements.
flowchart TD
A["Research Goal: Compare OU Process Model vs. Naive Rolling Window<br/>for Pairs Trading Signals"] --> B
subgraph B ["Methodology & Inputs"]
direction LR
B1["Pair Selection<br/>Stock Price Data"] --> B2["Spread Calculation<br/>Price Ratio or Log Spread"]
end
B --> C{"Computational Modeling"}
C --> D["Naive Strategy<br/>Rolling Mean & STD"]
C --> E["OU Process Strategy<br/>MLE Parameter Estimation"]
D --> F
E --> F["Strategy Evaluation<br/>Risk-Return Metrics"]
F --> G["Findings & Outcomes"]
subgraph G []
direction TB
G1["OU Model captures<br/>signals & trends effectively"]
G2["Naive Model performs better<br/>on risk-return basis"]
G3["Limitations: Non-stationary pairs,<br/>parameter tuning challenges"]
end