How Much Should We Trust Staggered Difference-In-Differences Estimates?
ArXiv ID: ssrn-3794018 “View on arXiv”
Authors: Unknown
Abstract
We explain when and how staggered difference-in-differences regression estimators, commonly applied to assess the impact of policy changes, are biased. These bi
Keywords: Difference-in-Differences (DiD), Policy Evaluation, Econometric Bias, Causal Inference, Staggered Adoption, Multi-Asset (Quantitative Research)
Complexity vs Empirical Score
- Math Complexity: 7.0/10
- Empirical Rigor: 3.0/10
- Quadrant: Lab Rats
- Why: The paper involves advanced econometric theory on staggered difference-in-differences and discusses complex estimator derivations, but it is primarily a theoretical/methodological critique without original backtesting or heavy data implementation.
flowchart TD
A["Research Question:<br>How much should we trust staggered<br>DID estimates?"] --> B["Methodology: Simulation & Analytical Framework"]
B --> C{"Data / Inputs"}
C --> C1["Multi-Asset Dataset"]
C --> C2["Policy Adoption<br>Staggered Design"]
C --> C3["Treatment Effects<br>(Heterogeneity)"]
C --> C4["Distributional Assumptions"]
C1 & C2 & C3 & C4 --> D["Computational Process:<br>Estimation of Staggered DID"]
D --> D1["Standard TWFE Estimator"]
D --> D2["New (Robust) Estimators"]
D1 --> E{"Analysis"}
D2 --> E
E --> F["Key Findings / Outcomes"]
F --> F1["Bias Detection:<br>Standard TWFE often biased"]
F --> F2["Solution:<br>Use robust estimators<br>e.g., Callaway & Sant'Anna"]
F --> F3["Conclusion:<br>Trust estimates only after<br>robustness checks"]