Python Guide to Accompany Introductory Econometrics forFinance
ArXiv ID: ssrn-3475303 “View on arXiv”
Authors: Unknown
Abstract
This free software guide for Python with freely downloadable datasets brings the econometric techniques to life, showing readers how to implement the approaches
Keywords: Python, econometric techniques, software guide, dataset, data analysis, Multi-Asset
Complexity vs Empirical Score
- Math Complexity: 5.0/10
- Empirical Rigor: 7.0/10
- Quadrant: Street Traders
- Why: The paper is a practical Python guide with downloadable datasets and implementation code, indicating high empirical rigor, while the mathematics is introductory and applied, placing it in the low-to-moderate range.
flowchart TD
A["Research Goal: <br>Implement Econometrics for Finance"] --> B["Data/Inputs: <br>Freely Downloadable Datasets"]
B --> C["Methodology: <br>Apply Econometric Techniques"]
C --> D["Computational Process: <br>Python Implementation"]
D --> E["Outcome: <br>Multi-Asset Data Analysis"]
E --> F["Deliverable: <br>Software Guide & Insights"]