false

Supervised Similarity for High-Yield Corporate Bonds with Quantum Cognition Machine Learning

Supervised Similarity for High-Yield Corporate Bonds with Quantum Cognition Machine Learning ArXiv ID: 2502.01495 “View on arXiv” Authors: Unknown Abstract We investigate the application of quantum cognition machine learning (QCML), a novel paradigm for both supervised and unsupervised learning tasks rooted in the mathematical formalism of quantum theory, to distance metric learning in corporate bond markets. Compared to equities, corporate bonds are relatively illiquid and both trade and quote data in these securities are relatively sparse. Thus, a measure of distance/similarity among corporate bonds is particularly useful for a variety of practical applications in the trading of illiquid bonds, including the identification of similar tradable alternatives, pricing securities with relatively few recent quotes or trades, and explaining the predictions and performance of ML models based on their training data. Previous research has explored supervised similarity learning based on classical tree-based models in this context; here, we explore the application of the QCML paradigm for supervised distance metric learning in the same context, showing that it outperforms classical tree-based models in high-yield (HY) markets, while giving comparable or better performance (depending on the evaluation metric) in investment grade (IG) markets. ...

February 3, 2025 · 2 min · Research Team

Decision-informed Neural Networks with Large Language Model Integration for Portfolio Optimization

Decision-informed Neural Networks with Large Language Model Integration for Portfolio Optimization ArXiv ID: 2502.00828 “View on arXiv” Authors: Unknown Abstract This paper addresses the critical disconnect between prediction and decision quality in portfolio optimization by integrating Large Language Models (LLMs) with decision-focused learning. We demonstrate both theoretically and empirically that minimizing the prediction error alone leads to suboptimal portfolio decisions. We aim to exploit the representational power of LLMs for investment decisions. An attention mechanism processes asset relationships, temporal dependencies, and macro variables, which are then directly integrated into a portfolio optimization layer. This enables the model to capture complex market dynamics and align predictions with the decision objectives. Extensive experiments on S&P100 and DOW30 datasets show that our model consistently outperforms state-of-the-art deep learning models. In addition, gradient-based analyses show that our model prioritizes the assets most crucial to decision making, thus mitigating the effects of prediction errors on portfolio performance. These findings underscore the value of integrating decision objectives into predictions for more robust and context-aware portfolio management. ...

February 2, 2025 · 2 min · Research Team

Floating exercise boundaries for American options in time-inhomogeneous models

Floating exercise boundaries for American options in time-inhomogeneous models ArXiv ID: 2502.00740 “View on arXiv” Authors: Unknown Abstract This paper examines a semi-analytical approach for pricing American options in time-inhomogeneous models characterized by negative interest rates (for equity/FX) or negative convenience yields (for commodities/cryptocurrencies). Under such conditions, exercise boundaries may exhibit a “floating” structure - dynamically appearing and disappearing. For example, a second exercise boundary could emerge within the computational domain and subsequently both could collapse, demanding specialized pricing methodologies. ...

February 2, 2025 · 1 min · Research Team

MarketSenseAI 2.0: Enhancing Stock Analysis through LLM Agents

MarketSenseAI 2.0: Enhancing Stock Analysis through LLM Agents ArXiv ID: 2502.00415 “View on arXiv” Authors: Unknown Abstract MarketSenseAI is a novel framework for holistic stock analysis which leverages Large Language Models (LLMs) to process financial news, historical prices, company fundamentals and the macroeconomic environment to support decision making in stock analysis and selection. In this paper, we present the latest advancements on MarketSenseAI, driven by rapid technological expansion in LLMs. Through a novel architecture combining Retrieval-Augmented Generation and LLM agents, the framework processes SEC filings and earnings calls, while enriching macroeconomic analysis through systematic processing of diverse institutional reports. We demonstrate a significant improvement in fundamental analysis accuracy over the previous version. Empirical evaluation on S&P 100 stocks over two years (2023-2024) shows MarketSenseAI achieving cumulative returns of 125.9% compared to the index return of 73.5%, while maintaining comparable risk profiles. Further validation on S&P 500 stocks during 2024 demonstrates the framework’s scalability, delivering a 33.8% higher Sortino ratio than the market. This work marks a significant advancement in applying LLM technology to financial analysis, offering insights into the robustness of LLM-driven investment strategies. ...

February 1, 2025 · 2 min · Research Team

Testing for the Minimum Mean-Variance Spanning Set

Testing for the Minimum Mean-Variance Spanning Set ArXiv ID: 2501.19213 “View on arXiv” Authors: Unknown Abstract This paper explores the estimation and inference of the minimum spanning set (MSS), the smallest subset of risky assets that spans the mean-variance efficient frontier of the full asset set. We establish identification conditions for the MSS and develop a novel procedure for its estimation and inference. Our theoretical analysis shows that the proposed MSS estimator covers the true MSS with probability approaching 1 and converges asymptotically to the true MSS at any desired confidence level, such as 0.95 or 0.99. Monte Carlo simulations confirm the strong finite-sample performance of the MSS estimator. We apply our method to evaluate the relative importance of individual stock momentum and factor momentum strategies, along with a set of well-established stock return factors. The empirical results highlight factor momentum, along with several stock momentum and return factors, as key drivers of mean-variance efficiency. Furthermore, our analysis uncovers the sources of contribution from these factors and provides a ranking of their relative importance, offering new insights into their roles in mean-variance analysis. ...

January 31, 2025 · 2 min · Research Team

TRADES: Generating Realistic Market Simulations with Diffusion Models

TRADES: Generating Realistic Market Simulations with Diffusion Models ArXiv ID: 2502.07071 “View on arXiv” Authors: Unknown Abstract Financial markets are complex systems characterized by high statistical noise, nonlinearity, volatility, and constant evolution. Thus, modeling them is extremely hard. Here, we address the task of generating realistic and responsive Limit Order Book (LOB) market simulations, which are fundamental for calibrating and testing trading strategies, performing market impact experiments, and generating synthetic market data. We propose a novel TRAnsformer-based Denoising Diffusion Probabilistic Engine for LOB Simulations (TRADES). TRADES generates realistic order flows as time series conditioned on the state of the market, leveraging a transformer-based architecture that captures the temporal and spatial characteristics of high-frequency market data. There is a notable absence of quantitative metrics for evaluating generative market simulation models in the literature. To tackle this problem, we adapt the predictive score, a metric measured as an MAE, to market data by training a stock price predictive model on synthetic data and testing it on real data. We compare TRADES with previous works on two stocks, reporting a 3.27 and 3.48 improvement over SoTA according to the predictive score, demonstrating that we generate useful synthetic market data for financial downstream tasks. Furthermore, we assess TRADES’s market simulation realism and responsiveness, showing that it effectively learns the conditional data distribution and successfully reacts to an experimental agent, giving sprout to possible calibrations and evaluations of trading strategies and market impact experiments. To perform the experiments, we developed DeepMarket, the first open-source Python framework for LOB market simulation with deep learning. In our repository, we include a synthetic LOB dataset composed of TRADES’s generated simulations. ...

January 31, 2025 · 2 min · Research Team

Year-over-Year Developments in Financial Fraud Detection via Deep Learning: A Systematic Literature Review

Year-over-Year Developments in Financial Fraud Detection via Deep Learning: A Systematic Literature Review ArXiv ID: 2502.00201 “View on arXiv” Authors: Unknown Abstract This paper systematically reviews advancements in deep learning (DL) techniques for financial fraud detection, a critical issue in the financial sector. Using the Kitchenham systematic literature review approach, 57 studies published between 2019 and 2024 were analyzed. The review highlights the effectiveness of various deep learning models such as Convolutional Neural Networks, Long Short-Term Memory, and transformers across domains such as credit card transactions, insurance claims, and financial statement audits. Performance metrics such as precision, recall, F1-score, and AUC-ROC were evaluated. Key themes explored include the impact of data privacy frameworks and advancements in feature engineering and data preprocessing. The study emphasizes challenges such as imbalanced datasets, model interpretability, and ethical considerations, alongside opportunities for automation and privacy-preserving techniques such as blockchain integration and Principal Component Analysis. By examining trends over the past five years, this review identifies critical gaps and promising directions for advancing DL applications in financial fraud detection, offering actionable insights for researchers and practitioners. ...

January 31, 2025 · 2 min · Research Team

Bankruptcy analysis using images and convolutional neural networks (CNN)

Bankruptcy analysis using images and convolutional neural networks (CNN) ArXiv ID: 2502.15726 “View on arXiv” Authors: Unknown Abstract The marketing departments of financial institutions strive to craft products and services that cater to the diverse needs of businesses of all sizes. However, it is evident upon analysis that larger corporations often receive a more substantial portion of available funds. This disparity arises from the relative ease of assessing the risk of default and bankruptcy in these more prominent companies. Historically, risk analysis studies have focused on data from publicly traded or stock exchange-listed companies, leaving a gap in knowledge about small and medium-sized enterprises (SMEs). Addressing this gap, this study introduces a method for evaluating SMEs by generating images for processing via a convolutional neural network (CNN). To this end, more than 10,000 images, one for each company in the sample, were created to identify scenarios in which the CNN can operate with higher assertiveness and reduced training error probability. The findings demonstrate a significant predictive capacity, achieving 97.8% accuracy, when a substantial number of images are utilized. Moreover, the image creation method paves the way for potential applications of this technique in various sectors and for different analytical purposes. ...

January 29, 2025 · 2 min · Research Team

Forecasting S&P 500 Using LSTM Models

Forecasting S&P 500 Using LSTM Models ArXiv ID: 2501.17366 “View on arXiv” Authors: Unknown Abstract With the volatile and complex nature of financial data influenced by external factors, forecasting the stock market is challenging. Traditional models such as ARIMA and GARCH perform well with linear data but struggle with non-linear dependencies. Machine learning and deep learning models, particularly Long Short-Term Memory (LSTM) networks, address these challenges by capturing intricate patterns and long-term dependencies. This report compares ARIMA and LSTM models in predicting the S&P 500 index, a major financial benchmark. Using historical price data and technical indicators, we evaluated these models using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The ARIMA model showed reasonable performance with an MAE of 462.1, RMSE of 614, and 89.8 percent accuracy, effectively capturing short-term trends but limited by its linear assumptions. The LSTM model, leveraging sequential processing capabilities, outperformed ARIMA with an MAE of 369.32, RMSE of 412.84, and 92.46 percent accuracy, capturing both short- and long-term dependencies. Notably, the LSTM model without additional features performed best, achieving an MAE of 175.9, RMSE of 207.34, and 96.41 percent accuracy, showcasing its ability to handle market data efficiently. Accurately predicting stock movements is crucial for investment strategies, risk assessments, and market stability. Our findings confirm the potential of deep learning models in handling volatile financial data compared to traditional ones. The results highlight the effectiveness of LSTM and suggest avenues for further improvements. This study provides insights into financial forecasting, offering a comparative analysis of ARIMA and LSTM while outlining their strengths and limitations. ...

January 29, 2025 · 2 min · Research Team

Reinforcement-Learning Portfolio Allocation with Dynamic Embedding of Market Information

Reinforcement-Learning Portfolio Allocation with Dynamic Embedding of Market Information ArXiv ID: 2501.17992 “View on arXiv” Authors: Unknown Abstract We develop a portfolio allocation framework that leverages deep learning techniques to address challenges arising from high-dimensional, non-stationary, and low-signal-to-noise market information. Our approach includes a dynamic embedding method that reduces the non-stationary, high-dimensional state space into a lower-dimensional representation. We design a reinforcement learning (RL) framework that integrates generative autoencoders and online meta-learning to dynamically embed market information, enabling the RL agent to focus on the most impactful parts of the state space for portfolio allocation decisions. Empirical analysis based on the top 500 U.S. stocks demonstrates that our framework outperforms common portfolio benchmarks and the predict-then-optimize (PTO) approach using machine learning, particularly during periods of market stress. Traditional factor models do not fully explain this superior performance. The framework’s ability to time volatility reduces its market exposure during turbulent times. Ablation studies confirm the robustness of this performance across various reinforcement learning algorithms. Additionally, the embedding and meta-learning techniques effectively manage the complexities of high-dimensional, noisy, and non-stationary financial data, enhancing both portfolio performance and risk management. ...

January 29, 2025 · 2 min · Research Team