false

S&P 500 Trend Prediction

S&P 500 Trend Prediction ArXiv ID: 2412.11462 “View on arXiv” Authors: Unknown Abstract This project aims to predict short-term and long-term upward trends in the S&P 500 index using machine learning models and feature engineering based on the “101 Formulaic Alphas” methodology. The study employed multiple models, including Logistic Regression, Decision Trees, Random Forests, Neural Networks, K-Nearest Neighbors (KNN), and XGBoost, to identify market trends from historical stock data collected from Yahoo! Finance. Data preprocessing involved handling missing values, standardization, and iterative feature selection to ensure relevance and variability. For short-term predictions, KNN emerged as the most effective model, delivering robust performance with high recall for upward trends, while for long-term forecasts, XGBoost demonstrated the highest accuracy and AUC scores after hyperparameter tuning and class imbalance adjustments using SMOTE. Feature importance analysis highlighted the dominance of momentum-based and volume-related indicators in driving predictions. However, models exhibited limitations such as overfitting and low recall for positive market movements, particularly in imbalanced datasets. The study concludes that KNN is ideal for short-term alerts, whereas XGBoost is better suited for long-term trend forecasting. Future enhancements could include advanced architectures like Long Short-Term Memory (LSTM) networks and further feature refinement to improve precision and generalizability. These findings contribute to developing reliable machine learning tools for market trend prediction and investment decision-making. ...

December 16, 2024 · 2 min · Research Team

Decoding OTC Government Bond Market Liquidity: An ABM Model for Market Dynamics

Decoding OTC Government Bond Market Liquidity: An ABM Model for Market Dynamics ArXiv ID: 2501.16331 “View on arXiv” Authors: Unknown Abstract The over-the-counter (OTC) government bond markets are characterised by their bilateral trading structures, which pose unique challenges to understanding and ensuring market stability and liquidity. In this paper, we develop a bespoke ABM that simulates market-maker interactions within a stylised government bond market. The model focuses on the dynamics of liquidity and stability in the secondary trading of government bonds, particularly in concentrated markets like those found in Australia and the UK. Through this simulation, we test key hypotheses around improving market stability, focusing on the effects of agent diversity, business costs, and client base size. We demonstrate that greater agent diversity enhances market liquidity and that reducing the costs of market-making can improve overall market stability. The model offers insights into computational finance by simulating trading without price transparency, highlighting how micro-structural elements can affect macro-level market outcomes. This research contributes to the evolving field of computational finance by employing computational intelligence techniques to better understand the fundamental mechanics of government bond markets, providing actionable insights for both academics and practitioners. ...

December 15, 2024 · 2 min · Research Team

From Votes to Volatility Predicting the Stock Market on Election Day

From Votes to Volatility Predicting the Stock Market on Election Day ArXiv ID: 2412.11192 “View on arXiv” Authors: Unknown Abstract Stock market forecasting has been a topic of extensive research, aiming to provide investors with optimal stock recommendations for higher returns. In recent years, this field has gained even more attention due to the widespread adoption of deep learning models. While these models have achieved impressive accuracy in predicting stock behavior, tailoring them to specific scenarios has become increasingly important. Election Day represents one such critical scenario, characterized by intensified market volatility, as the winning candidate’s policies significantly impact various economic sectors and companies. To address this challenge, we propose the Election Day Stock Market Forecasting (EDSMF) Model. Our approach leverages the contextual capabilities of large language models alongside specialized agents designed to analyze the political and economic consequences of elections. By building on a state-of-the-art architecture, we demonstrate that EDSMF improves the predictive performance of the S&P 500 during this uniquely volatile day. ...

December 15, 2024 · 2 min · Research Team

PolyModel for Hedge Funds' Portfolio Construction Using Machine Learning

PolyModel for Hedge Funds’ Portfolio Construction Using Machine Learning ArXiv ID: 2412.11019 “View on arXiv” Authors: Unknown Abstract The domain of hedge fund investments is undergoing significant transformation, influenced by the rapid expansion of data availability and the advancement of analytical technologies. This study explores the enhancement of hedge fund investment performance through the integration of machine learning techniques, the application of PolyModel feature selection, and the analysis of fund size. We address three critical questions: (1) the effect of machine learning on trading performance, (2) the role of PolyModel feature selection in fund selection and performance, and (3) the comparative reliability of larger versus smaller funds. Our findings offer compelling insights. We observe that while machine learning techniques enhance cumulative returns, they also increase annual volatility, indicating variability in performance. PolyModel feature selection proves to be a robust strategy, with approaches that utilize a comprehensive set of features for fund selection outperforming more selective methodologies. Notably, Long-Term Stability (LTS) effectively manages portfolio volatility while delivering favorable returns. Contrary to popular belief, our results suggest that larger funds do not consistently yield better investment outcomes, challenging the assumption of their inherent reliability. This research highlights the transformative impact of data-driven approaches in the hedge fund investment arena and provides valuable implications for investors and asset managers. By leveraging machine learning and PolyModel feature selection, investors can enhance portfolio optimization and reassess the dependability of larger funds, leading to more informed investment strategies. ...

December 15, 2024 · 2 min · Research Team

Simulation of square-root processes made simple: applications to the Heston model

Simulation of square-root processes made simple: applications to the Heston model ArXiv ID: 2412.11264 “View on arXiv” Authors: Unknown Abstract We introduce a simple, efficient and accurate nonnegative preserving numerical scheme for simulating the square-root process. The novel idea is to simulate the integrated square-root process first instead of the square-root process itself. Numerical experiments on realistic parameter sets, applied for the integrated process and the Heston model, display high precision with a very low number of time steps. As a bonus, our scheme yields the exact limiting Inverse Gaussian distributions of the integrated square-root process with only one single time-step in two scenarios: (i) for high mean-reversion and volatility-of-volatility regimes, regardless of maturity; and (ii) for long maturities, independent of the other parameters. ...

December 15, 2024 · 2 min · Research Team

The AI Black-Scholes: Finance-Informed Neural Network

The AI Black-Scholes: Finance-Informed Neural Network ArXiv ID: 2412.12213 “View on arXiv” Authors: Unknown Abstract In the realm of option pricing, existing models are typically classified into principle-driven methods, such as solving partial differential equations (PDEs) that pricing function satisfies, and data-driven approaches, such as machine learning (ML) techniques that parameterize the pricing function directly. While principle-driven models offer a rigorous theoretical framework, they often rely on unrealistic assumptions, such as asset processes adhering to fixed stochastic differential equations (SDEs). Moreover, they can become computationally intensive, particularly in high-dimensional settings when analytical solutions are not available and thus numerical solutions are needed. In contrast, data-driven models excel in capturing market data trends, but they often lack alignment with core financial principles, raising concerns about interpretability and predictive accuracy, especially when dealing with limited or biased datasets. This work proposes a hybrid approach to address these limitations by integrating the strengths of both principled and data-driven methodologies. Our framework combines the theoretical rigor and interpretability of PDE-based models with the adaptability of machine learning techniques, yielding a more versatile methodology for pricing a broad spectrum of options. We validate our approach across different volatility modeling approaches-both with constant volatility (Black-Scholes) and stochastic volatility (Heston), demonstrating that our proposed framework, Finance-Informed Neural Network (FINN), not only enhances predictive accuracy but also maintains adherence to core financial principles. FINN presents a promising tool for practitioners, offering robust performance across a variety of market conditions. ...

December 15, 2024 · 2 min · Research Team

Auto-Regressive Control of Execution Costs

Auto-Regressive Control of Execution Costs ArXiv ID: 2412.10947 “View on arXiv” Authors: Unknown Abstract Bertsimas and Lo’s seminal work established a foundational framework for addressing the implementation shortfall dilemma faced by large institutional investors. Their models emphasized the critical role of accurate knowledge of market microstructure and price/information dynamics in optimizing trades to minimize execution costs. However, this paper recognizes that perfect initial knowledge may not be a realistic assumption for new investors entering the market. Therefore, this study aims to bridge this gap by proposing an approach that iteratively derives OLS estimates of the market parameters from period to period. This methodology enables uninformed investors to engage in the market dynamically, adjusting their strategies over time based on evolving estimates, thus offering a practical solution for navigating the complexities of execution cost optimization without perfect initial knowledge. ...

December 14, 2024 · 2 min · Research Team

Classification of Financial Data Using Quantum Support Vector Machine

Classification of Financial Data Using Quantum Support Vector Machine ArXiv ID: 2412.10860 “View on arXiv” Authors: Unknown Abstract Quantum Support Vector Machine is a kernel-based approach to classification problems. We study the applicability of quantum kernels to financial data, specifically our self-curated Dhaka Stock Exchange (DSEx) Broad Index dataset. To the best of our knowledge, this is the very first systematic research work on this dataset on the application of quantum kernel. We report empirical quantum advantage in our work, using several quantum kernels and proposing the best one for this dataset while verifying the Phase Space Terrain Ruggedness Index metric. We estimate the resources needed to carry out these investigations on a larger scale for future practitioners. ...

December 14, 2024 · 2 min · Research Team

FinGPT: Enhancing Sentiment-Based Stock Movement Prediction with Dissemination-Aware and Context-Enriched LLMs

FinGPT: Enhancing Sentiment-Based Stock Movement Prediction with Dissemination-Aware and Context-Enriched LLMs ArXiv ID: 2412.10823 “View on arXiv” Authors: Unknown Abstract Financial sentiment analysis is crucial for understanding the influence of news on stock prices. Recently, large language models (LLMs) have been widely adopted for this purpose due to their advanced text analysis capabilities. However, these models often only consider the news content itself, ignoring its dissemination, which hampers accurate prediction of short-term stock movements. Additionally, current methods often lack sufficient contextual data and explicit instructions in their prompts, limiting LLMs’ ability to interpret news. In this paper, we propose a data-driven approach that enhances LLM-powered sentiment-based stock movement predictions by incorporating news dissemination breadth, contextual data, and explicit instructions. We cluster recent company-related news to assess its reach and influence, enriching prompts with more specific data and precise instructions. This data is used to construct an instruction tuning dataset to fine-tune an LLM for predicting short-term stock price movements. Our experimental results show that our approach improves prediction accuracy by 8% compared to existing methods. ...

December 14, 2024 · 2 min · Research Team

Stochastic Gradient Descent in the Optimal Control of Execution Costs

Stochastic Gradient Descent in the Optimal Control of Execution Costs ArXiv ID: 2412.12199 “View on arXiv” Authors: Unknown Abstract Bertsimas and Lo’s seminal work laid the groundwork for addressing the implementation shortfall dilemma in institutional investing, emphasizing the significance of market microstructure and price dynamics in minimizing execution costs. However, the ability to derive a theoretical Optimum market order policy is an unrealistic assumption for many investors. This study aims to bridge this gap by proposing an approach that leverages stochastic gradient descent (SGD) to derive alternative solutions for optimizing execution cost policies in dynamic markets where explicit mathematical solutions may not yet exist. The proposed methodology assumes the existence of a mathematically derived optimal solution that is a function of the underlying market dynamics. By iteratively refining strategies using SGD, economists can adapt their approaches over time based on evolving execution strategies. While these SGD-based solutions may not achieve optimality, they offer valuable insights into optimizing policies under complex market frameworks. These results serve as a bridge for economists and mathematicians, facilitating the study of the Optimum policy volatile markets while offering SGD driven implementable policies that closely approximate optimal outcomes within shorter time frames. ...

December 14, 2024 · 2 min · Research Team