false

NEAT Algorithm-based Stock Trading Strategy with Multiple Technical Indicators Resonance

NEAT Algorithm-based Stock Trading Strategy with Multiple Technical Indicators Resonance ArXiv ID: 2501.14736 “View on arXiv” Authors: Unknown Abstract In this study, we applied the NEAT (NeuroEvolution of Augmenting Topologies) algorithm to stock trading using multiple technical indicators. Our approach focused on maximizing earning, avoiding risk, and outperforming the Buy & Hold strategy. We used progressive training data and a multi-objective fitness function to guide the evolution of the population towards these objectives. The results of our study showed that the NEAT model achieved similar returns to the Buy & Hold strategy, but with lower risk exposure and greater stability. We also identified some challenges in the training process, including the presence of a large number of unused nodes and connections in the model architecture. In future work, it may be worthwhile to explore ways to improve the NEAT algorithm and apply it to shorter interval data in order to assess the potential impact on performance. ...

December 11, 2024 · 2 min · Research Team

RAG-IT: Retrieval-Augmented Instruction Tuning for Automated Financial Analysis -- A Case Study for the Semiconductor Sector

RAG-IT: Retrieval-Augmented Instruction Tuning for Automated Financial Analysis – A Case Study for the Semiconductor Sector ArXiv ID: 2412.08179 “View on arXiv” Authors: Unknown Abstract Financial analysis relies heavily on the interpretation of earnings reports to assess company performance and guide decision-making. Traditional methods for generating such analyzes require significant financial expertise and are often time-consuming. With the rapid advancement of Large Language Models (LLMs), domain-specific adaptations have emerged for financial tasks such as sentiment analysis and entity recognition. This paper introduces RAG-IT (Retrieval-Augmented Instruction Tuning), a novel framework designed to automate the generation of earnings report analysis through an LLM fine-tuned specifically for the financial domain. Our approach integrates retrieval augmentation with instruction-based fine-tuning to enhance factual accuracy, contextual relevance, and domain adaptability. We construct a sector-specific financial instruction dataset derived from semiconductor industry documents to guide the LLM adaptation to specialized financial reasoning. Using NVIDIA, AMD, and Broadcom as representative companies, our case study demonstrates that RAG-IT substantially improves a general-purpose open-source LLM and achieves performance comparable to commercial systems like GPT-3.5 on financial report generation tasks. This research highlights the potential of retrieval-augmented instruction tuning to streamline and elevate financial analysis automation, advancing the broader field of intelligent financial reporting. ...

December 11, 2024 · 2 min · Research Team

A Consolidated Volatility Prediction with Back Propagation Neural Network and Genetic Algorithm

A Consolidated Volatility Prediction with Back Propagation Neural Network and Genetic Algorithm ArXiv ID: 2412.07223 “View on arXiv” Authors: Unknown Abstract This paper provides a unique approach with AI algorithms to predict emerging stock markets volatility. Traditionally, stock volatility is derived from historical volatility,Monte Carlo simulation and implied volatility as well. In this paper, the writer designs a consolidated model with back-propagation neural network and genetic algorithm to predict future volatility of emerging stock markets and found that the results are quite accurate with low errors. ...

December 10, 2024 · 1 min · Research Team

A Hype-Adjusted Probability Measure for NLP Stock Return Forecasting

A Hype-Adjusted Probability Measure for NLP Stock Return Forecasting ArXiv ID: 2412.07587 “View on arXiv” Authors: Unknown Abstract This article introduces a Hype-Adjusted Probability Measure in the context of a new Natural Language Processing (NLP) approach for stock return and volatility forecasting. A novel sentiment score equation is proposed to represent the impact of intraday news on forecasting next-period stock return and volatility for selected U.S. semiconductor tickers, a very vibrant industry sector. This work improves the forecast accuracy by addressing news bias, memory, and weight, and incorporating shifts in sentiment direction. More importantly, it extends the use of the remarkable tool of change of Probability Measure developed in the finance of Asset Pricing to NLP forecasting by constructing a Hype-Adjusted Probability Measure, obtained from a redistribution of the weights in the probability space, meant to correct for excessive or insufficient news. ...

December 10, 2024 · 2 min · Research Team

A Joint Energy and Differentially-Private Smart Meter Data Market

A Joint Energy and Differentially-Private Smart Meter Data Market ArXiv ID: 2412.07688 “View on arXiv” Authors: Unknown Abstract Given the vital role that smart meter data could play in handling uncertainty in energy markets, data markets have been proposed as a means to enable increased data access. However, most extant literature considers energy markets and data markets separately, which ignores the interdependence between them. In addition, existing data market frameworks rely on a trusted entity to clear the market. This paper proposes a joint energy and data market focusing on the day-ahead retailer energy procurement problem with uncertain demand. The retailer can purchase differentially-private smart meter data from consumers to reduce uncertainty. The problem is modelled as an integrated forecasting and optimisation problem providing a means of valuing data directly rather than valuing forecasts or forecast accuracy. Value is determined by the Wasserstein distance, enabling privacy to be preserved during the valuation and procurement process. The value of joint energy and data clearing is highlighted through numerical case studies using both synthetic and real smart meter data. ...

December 10, 2024 · 2 min · Research Team

A theory of passive market impact

A theory of passive market impact ArXiv ID: 2412.07461 “View on arXiv” Authors: Unknown Abstract While the market impact of aggressive orders has been extensively studied, the impact of passive orders, those executed through limit orders, remains less understood. The goal of this paper is to investigate passive market impact by developing a microstructure model connecting liquidity dynamics and price moves. A key innovation of our approach is to replace the traditional assumption of constant information content for each trade by a function that depends on the available volume in the limit order book. Within this framework, we explore scaling limits and analyze the market impact of passive metaorders. Additionally, we derive useful approximations for the shape of market impact curves, leading to closed-form formulas that can be easily applied in practice. ...

December 10, 2024 · 2 min · Research Team

How to Choose a Threshold for an Evaluation Metric for Large Language Models

How to Choose a Threshold for an Evaluation Metric for Large Language Models ArXiv ID: 2412.12148 “View on arXiv” Authors: Unknown Abstract To ensure and monitor large language models (LLMs) reliably, various evaluation metrics have been proposed in the literature. However, there is little research on prescribing a methodology to identify a robust threshold on these metrics even though there are many serious implications of an incorrect choice of the thresholds during deployment of the LLMs. Translating the traditional model risk management (MRM) guidelines within regulated industries such as the financial industry, we propose a step-by-step recipe for picking a threshold for a given LLM evaluation metric. We emphasize that such a methodology should start with identifying the risks of the LLM application under consideration and risk tolerance of the stakeholders. We then propose concrete and statistically rigorous procedures to determine a threshold for the given LLM evaluation metric using available ground-truth data. As a concrete example to demonstrate the proposed methodology at work, we employ it on the Faithfulness metric, as implemented in various publicly available libraries, using the publicly available HaluBench dataset. We also lay a foundation for creating systematic approaches to select thresholds, not only for LLMs but for any GenAI applications. ...

December 10, 2024 · 2 min · Research Team

Stock Type Prediction Model Based on Hierarchical Graph Neural Network

Stock Type Prediction Model Based on Hierarchical Graph Neural Network ArXiv ID: 2412.06862 “View on arXiv” Authors: Unknown Abstract This paper introduces a novel approach to stock data analysis by employing a Hierarchical Graph Neural Network (HGNN) model that captures multi-level information and relational structures in the stock market. The HGNN model integrates stock relationship data and hierarchical attributes to predict stock types effectively. The paper discusses the construction of a stock industry relationship graph and the extraction of temporal information from historical price sequences. It also highlights the design of a graph convolution operation and a temporal attention aggregator to model the macro market state. The integration of these features results in a comprehensive stock prediction model that addresses the challenges of utilizing stock relationship data and modeling hierarchical attributes in the stock market. ...

December 9, 2024 · 2 min · Research Team

Systematic comparison of deep generative models applied to multivariate financial time series

Systematic comparison of deep generative models applied to multivariate financial time series ArXiv ID: 2412.06417 “View on arXiv” Authors: Unknown Abstract Financial time series (FTS) generation models are a core pillar to applications in finance. Risk management and portfolio optimization rely on realistic multivariate price generation models. Accordingly, there is a strong modelling literature dating back to Bachelier’s Theory of Speculation in 1901. Generating FTS using deep generative models (DGMs) is still in its infancy. In this work, we systematically compare DGMs against state-of-the-art parametric alternatives for multivariate FTS generation. We initially compare both DGMs and parametric models over increasingly complex synthetic datasets. The models are evaluated through distance measures for varying distribution moments of both the full and rolling FTS. We then apply the best performing DGM models to empirical data, demonstrating the benefit of DGMs through a implied volatility trading task. ...

December 9, 2024 · 2 min · Research Team

Mean--Variance Portfolio Selection by Continuous-Time Reinforcement Learning: Algorithms, Regret Analysis, and Empirical Study

Mean–Variance Portfolio Selection by Continuous-Time Reinforcement Learning: Algorithms, Regret Analysis, and Empirical Study ArXiv ID: 2412.16175 “View on arXiv” Authors: Unknown Abstract We study continuous-time mean–variance portfolio selection in markets where stock prices are diffusion processes driven by observable factors that are also diffusion processes, yet the coefficients of these processes are unknown. Based on the recently developed reinforcement learning (RL) theory for diffusion processes, we present a general data-driven RL algorithm that learns the pre-committed investment strategy directly without attempting to learn or estimate the market coefficients. For multi-stock Black–Scholes markets without factors, we further devise a baseline algorithm and prove its performance guarantee by deriving a sublinear regret bound in terms of the Sharpe ratio. For performance enhancement and practical implementation, we modify the baseline algorithm and carry out an extensive empirical study to compare its performance, in terms of a host of common metrics, with a large number of widely employed portfolio allocation strategies on S&P 500 constituents. The results demonstrate that the proposed continuous-time RL strategy is consistently among the best, especially in a volatile bear market, and decisively outperforms the model-based continuous-time counterparts by significant margins. ...

December 8, 2024 · 2 min · Research Team