false

LSR-IGRU: Stock Trend Prediction Based on Long Short-Term Relationships and Improved GRU

LSR-IGRU: Stock Trend Prediction Based on Long Short-Term Relationships and Improved GRU ArXiv ID: 2409.08282 “View on arXiv” Authors: Unknown Abstract Stock price prediction is a challenging problem in the field of finance and receives widespread attention. In recent years, with the rapid development of technologies such as deep learning and graph neural networks, more research methods have begun to focus on exploring the interrelationships between stocks. However, existing methods mostly focus on the short-term dynamic relationships of stocks and directly integrating relationship information with temporal information. They often overlook the complex nonlinear dynamic characteristics and potential higher-order interaction relationships among stocks in the stock market. Therefore, we propose a stock price trend prediction model named LSR-IGRU in this paper, which is based on long short-term stock relationships and an improved GRU input. Firstly, we construct a long short-term relationship matrix between stocks, where secondary industry information is employed for the first time to capture long-term relationships of stocks, and overnight price information is utilized to establish short-term relationships. Next, we improve the inputs of the GRU model at each step, enabling the model to more effectively integrate temporal information and long short-term relationship information, thereby significantly improving the accuracy of predicting stock trend changes. Finally, through extensive experiments on multiple datasets from stock markets in China and the United States, we validate the superiority of the proposed LSR-IGRU model over the current state-of-the-art baseline models. We also apply the proposed model to the algorithmic trading system of a financial company, achieving significantly higher cumulative portfolio returns compared to other baseline methods. Our sources are released at https://github.com/ZP1481616577/Baselines_LSR-IGRU. ...

August 26, 2024 · 2 min · Research Team

MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing

MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing ArXiv ID: 2409.06724 “View on arXiv” Authors: Unknown Abstract We explore the performance of various artificial neural network architectures, including a multilayer perceptron (MLP), Kolmogorov-Arnold network (KAN), LSTM-GRU hybrid recursive neural network (RNN) models, and a time-delay neural network (TDNN) for pricing European call options. In this study, we attempt to leverage the ability of supervised learning methods, such as ANNs, KANs, and gradient-boosted decision trees, to approximate complex multivariate functions in order to calibrate option prices based on past market data. The motivation for using ANNs and KANs is the Universal Approximation Theorem and Kolmogorov-Arnold Representation Theorem, respectively. Specifically, we use S&P 500 (SPX) and NASDAQ 100 (NDX) index options traded during 2015-2023 with times to maturity ranging from 15 days to over 4 years (OptionMetrics IvyDB US dataset). Black & Scholes’s (BS) PDE \cite{“Black1973”} model’s performance in pricing the same options compared to real data is used as a benchmark. This model relies on strong assumptions, and it has been observed and discussed in the literature that real data does not match its predictions. Supervised learning methods are widely used as an alternative for calibrating option prices due to some of the limitations of this model. In our experiments, the BS model underperforms compared to all of the others. Also, the best TDNN model outperforms the best MLP model on all error metrics. We implement a simple self-attention mechanism to enhance the RNN models, significantly improving their performance. The best-performing model overall is the LSTM-GRU hybrid RNN model with attention. Also, the KAN model outperforms the TDNN and MLP models. We analyze the performance of all models by ticker, moneyness category, and over/under/correctly-priced percentage. ...

August 26, 2024 · 3 min · Research Team

StockTime: A Time Series Specialized Large Language Model Architecture for Stock Price Prediction

StockTime: A Time Series Specialized Large Language Model Architecture for Stock Price Prediction ArXiv ID: 2409.08281 “View on arXiv” Authors: Unknown Abstract The stock price prediction task holds a significant role in the financial domain and has been studied for a long time. Recently, large language models (LLMs) have brought new ways to improve these predictions. While recent financial large language models (FinLLMs) have shown considerable progress in financial NLP tasks compared to smaller pre-trained language models (PLMs), challenges persist in stock price forecasting. Firstly, effectively integrating the modalities of time series data and natural language to fully leverage these capabilities remains complex. Secondly, FinLLMs focus more on analysis and interpretability, which can overlook the essential features of time series data. Moreover, due to the abundance of false and redundant information in financial markets, models often produce less accurate predictions when faced with such input data. In this paper, we introduce StockTime, a novel LLM-based architecture designed specifically for stock price data. Unlike recent FinLLMs, StockTime is specifically designed for stock price time series data. It leverages the natural ability of LLMs to predict the next token by treating stock prices as consecutive tokens, extracting textual information such as stock correlations, statistical trends and timestamps directly from these stock prices. StockTime then integrates both textual and time series data into the embedding space. By fusing this multimodal data, StockTime effectively predicts stock prices across arbitrary look-back periods. Our experiments demonstrate that StockTime outperforms recent LLMs, as it gives more accurate predictions while reducing memory usage and runtime costs. ...

August 25, 2024 · 2 min · Research Team

Causal Hierarchy in the Financial Market Network -- Uncovered by the Helmholtz-Hodge-Kodaira Decomposition

Causal Hierarchy in the Financial Market Network – Uncovered by the Helmholtz-Hodge-Kodaira Decomposition ArXiv ID: 2408.12839 “View on arXiv” Authors: Unknown Abstract Granger causality can uncover the cause and effect relationships in financial networks. However, such networks can be convoluted and difficult to interpret, but the Helmholtz-Hodge-Kodaira decomposition can split them into a rotational and gradient component which reveals the hierarchy of Granger causality flow. Using Kenneth French’s business sector return time series, it is revealed that during the Covid crisis, precious metals and pharmaceutical products are causal drivers of the financial network. Moreover, the estimated Granger causality network shows a high connectivity during crisis which means that the research presented here can be especially useful to better understand crises in the market by revealing the dominant drivers of the crisis dynamics. ...

August 23, 2024 · 2 min · Research Team

Controllable Financial Market Generation with Diffusion Guided Meta Agent

Controllable Financial Market Generation with Diffusion Guided Meta Agent ArXiv ID: 2408.12991 “View on arXiv” Authors: Unknown Abstract Generative modeling has transformed many fields, such as language and visual modeling, while its application in financial markets remains under-explored. As the minimal unit within a financial market is an order, order-flow modeling represents a fundamental generative financial task. However, current approaches often yield unsatisfactory fidelity in generating order flow, and their generation lacks controllability, thereby limiting their practical applications. In this paper, we formulate the challenge of controllable financial market generation, and propose a Diffusion Guided Meta Agent (DigMA) model to address it. Specifically, we employ a conditional diffusion model to capture the dynamics of the market state represented by time-evolving distribution parameters of the mid-price return rate and the order arrival rate, and we define a meta agent with financial economic priors to generate orders from the corresponding distributions. Extensive experimental results show that DigMA achieves superior controllability and generation fidelity. Moreover, we validate its effectiveness as a generative environment for downstream high-frequency trading tasks and its computational efficiency. ...

August 23, 2024 · 2 min · Research Team

EUR-USD Exchange Rate Forecasting Based on Information Fusion with Large Language Models and Deep Learning Methods

EUR-USD Exchange Rate Forecasting Based on Information Fusion with Large Language Models and Deep Learning Methods ArXiv ID: 2408.13214 “View on arXiv” Authors: Unknown Abstract Accurate forecasting of the EUR/USD exchange rate is crucial for investors, businesses, and policymakers. This paper proposes a novel framework, IUS, that integrates unstructured textual data from news and analysis with structured data on exchange rates and financial indicators to enhance exchange rate prediction. The IUS framework employs large language models for sentiment polarity scoring and exchange rate movement classification of texts. These textual features are combined with quantitative features and input into a Causality-Driven Feature Generator. An Optuna-optimized Bi-LSTM model is then used to forecast the EUR/USD exchange rate. Experiments demonstrate that the proposed method outperforms benchmark models, reducing MAE by 10.69% and RMSE by 9.56% compared to the best performing baseline. Results also show the benefits of data fusion, with the combination of unstructured and structured data yielding higher accuracy than structured data alone. Furthermore, feature selection using the top 12 important quantitative features combined with the textual features proves most effective. The proposed IUS framework and Optuna-Bi-LSTM model provide a powerful new approach for exchange rate forecasting through multi-source data integration. ...

August 23, 2024 · 2 min · Research Team

Dynamic Pricing for Real Estate

Dynamic Pricing for Real Estate ArXiv ID: 2408.12553 “View on arXiv” Authors: Unknown Abstract We study a mathematical model for the optimization of the price of real estate (RE). This model can be characterised by a limited amount of goods, fixed sales horizon and presence of intermediate sales and revenue goals. We develop it as an enhancement and upgrade of the model presented by Besbes and Maglaras now also taking into account variable demand, time value of money, and growth of the objective value of Real Estate with the development stage. ...

August 22, 2024 · 2 min · Research Team

Enhancing Causal Discovery in Financial Networks with Piecewise Quantile Regression

Enhancing Causal Discovery in Financial Networks with Piecewise Quantile Regression ArXiv ID: 2408.12210 “View on arXiv” Authors: Unknown Abstract Financial networks can be constructed using statistical dependencies found within the price series of speculative assets. Across the various methods used to infer these networks, there is a general reliance on predictive modelling to capture cross-correlation effects. These methods usually model the flow of mean-response information, or the propagation of volatility and risk within the market. Such techniques, though insightful, don’t fully capture the broader distribution-level causality that is possible within speculative markets. This paper introduces a novel approach, combining quantile regression with a piecewise linear embedding scheme - allowing us to construct causality networks that identify the complex tail interactions inherent to financial markets. Applying this method to 260 cryptocurrency return series, we uncover significant tail-tail causal effects and substantial causal asymmetry. We identify a propensity for coins to be self-influencing, with comparatively sparse cross variable effects. Assessing all link types in conjunction, Bitcoin stands out as the primary influencer - a nuance that is missed in conventional linear mean-response analyses. Our findings introduce a comprehensive framework for modelling distributional causality, paving the way towards more holistic representations of causality in financial markets. ...

August 22, 2024 · 2 min · Research Team

EX-DRL: Hedging Against Heavy Losses with EXtreme Distributional Reinforcement Learning

EX-DRL: Hedging Against Heavy Losses with EXtreme Distributional Reinforcement Learning ArXiv ID: 2408.12446 “View on arXiv” Authors: Unknown Abstract Recent advancements in Distributional Reinforcement Learning (DRL) for modeling loss distributions have shown promise in developing hedging strategies in derivatives markets. A common approach in DRL involves learning the quantiles of loss distributions at specified levels using Quantile Regression (QR). This method is particularly effective in option hedging due to its direct quantile-based risk assessment, such as Value at Risk (VaR) and Conditional Value at Risk (CVaR). However, these risk measures depend on the accurate estimation of extreme quantiles in the loss distribution’s tail, which can be imprecise in QR-based DRL due to the rarity and extremity of tail data, as highlighted in the literature. To address this issue, we propose EXtreme DRL (EX-DRL), which enhances extreme quantile prediction by modeling the tail of the loss distribution with a Generalized Pareto Distribution (GPD). This method introduces supplementary data to mitigate the scarcity of extreme quantile observations, thereby improving estimation accuracy through QR. Comprehensive experiments on gamma hedging options demonstrate that EX-DRL improves existing QR-based models by providing more precise estimates of extreme quantiles, thereby improving the computation and reliability of risk metrics for complex financial risk management. ...

August 22, 2024 · 2 min · Research Team

Optimizing Performance: How Compact Models Match or Exceed GPT's Classification Capabilities through Fine-Tuning

Optimizing Performance: How Compact Models Match or Exceed GPT’s Classification Capabilities through Fine-Tuning ArXiv ID: 2409.11408 “View on arXiv” Authors: Unknown Abstract In this paper, we demonstrate that non-generative, small-sized models such as FinBERT and FinDRoBERTa, when fine-tuned, can outperform GPT-3.5 and GPT-4 models in zero-shot learning settings in sentiment analysis for financial news. These fine-tuned models show comparable results to GPT-3.5 when it is fine-tuned on the task of determining market sentiment from daily financial news summaries sourced from Bloomberg. To fine-tune and compare these models, we created a novel database, which assigns a market score to each piece of news without human interpretation bias, systematically identifying the mentioned companies and analyzing whether their stocks have gone up, down, or remained neutral. Furthermore, the paper shows that the assumptions of Condorcet’s Jury Theorem do not hold suggesting that fine-tuned small models are not independent of the fine-tuned GPT models, indicating behavioural similarities. Lastly, the resulted fine-tuned models are made publicly available on HuggingFace, providing a resource for further research in financial sentiment analysis and text classification. ...

August 22, 2024 · 2 min · Research Team