false

NeuralFactors: A Novel Factor Learning Approach to Generative Modeling of Equities

NeuralFactors: A Novel Factor Learning Approach to Generative Modeling of Equities ArXiv ID: 2408.01499 “View on arXiv” Authors: Unknown Abstract The use of machine learning for statistical modeling (and thus, generative modeling) has grown in popularity with the proliferation of time series models, text-to-image models, and especially large language models. Fundamentally, the goal of classical factor modeling is statistical modeling of stock returns, and in this work, we explore using deep generative modeling to enhance classical factor models. Prior work has explored the use of deep generative models in order to model hundreds of stocks, leading to accurate risk forecasting and alpha portfolio construction; however, that specific model does not allow for easy factor modeling interpretation in that the factor exposures cannot be deduced. In this work, we introduce NeuralFactors, a novel machine-learning based approach to factor analysis where a neural network outputs factor exposures and factor returns, trained using the same methodology as variational autoencoders. We show that this model outperforms prior approaches both in terms of log-likelihood performance and computational efficiency. Further, we show that this method is competitive to prior work in generating realistic synthetic data, covariance estimation, risk analysis (e.g., value at risk, or VaR, of portfolios), and portfolio optimization. Finally, due to the connection to classical factor analysis, we analyze how the factors our model learns cluster together and show that the factor exposures could be used for embedding stocks. ...

August 2, 2024 · 2 min · Research Team

Deep Learning for Options Trading: An End-To-End Approach

Deep Learning for Options Trading: An End-To-End Approach ArXiv ID: 2407.21791 “View on arXiv” Authors: Unknown Abstract We introduce a novel approach to options trading strategies using a highly scalable and data-driven machine learning algorithm. In contrast to traditional approaches that often require specifications of underlying market dynamics or assumptions on an option pricing model, our models depart fundamentally from the need for these prerequisites, directly learning non-trivial mappings from market data to optimal trading signals. Backtesting on more than a decade of option contracts for equities listed on the S&P 100, we demonstrate that deep learning models trained according to our end-to-end approach exhibit significant improvements in risk-adjusted performance over existing rules-based trading strategies. We find that incorporating turnover regularization into the models leads to further performance enhancements at prohibitively high levels of transaction costs. ...

July 31, 2024 · 2 min · Research Team

Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information

Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information ArXiv ID: 2407.21138 “View on arXiv” Authors: Unknown Abstract We present a dynamic hedging scheme for S&P 500 options, where rebalancing decisions are enhanced by integrating information about the implied volatility surface dynamics. The optimal hedging strategy is obtained through a deep policy gradient-type reinforcement learning algorithm. The favorable inclusion of forward-looking information embedded in the volatility surface allows our procedure to outperform several conventional benchmarks such as practitioner and smiled-implied delta hedging procedures, both in simulation and backtesting experiments. The outperformance is more pronounced in the presence of transaction costs. ...

July 30, 2024 · 2 min · Research Team

On the optimal design of a new class of proportional portfolio insurance strategies in a jump-diffusion framework

On the optimal design of a new class of proportional portfolio insurance strategies in a jump-diffusion framework ArXiv ID: 2407.21148 “View on arXiv” Authors: Unknown Abstract In this paper, we investigate an optimal investment problem associated with proportional portfolio insurance (PPI) strategies in the presence of jumps in the underlying dynamics. PPI strategies enable investors to mitigate downside risk while still retaining the potential for upside gains. This is achieved by maintaining an exposure to risky assets proportional to the difference between the portfolio value and the present value of the guaranteed amount. While PPI strategies are known to be free of downside risk in diffusion modeling frameworks with continuous trading, see e.g., Cont and Tankov (2009), real market applications exhibit a significant non-negligible risk, known as gap risk, which increases with the multiplier value. The goal of this paper is to determine the optimal PPI strategy in a setting where gap risk may occur, due to downward jumps in the asset price dynamics. We consider a loss-averse agent who aims at maximizing the expected utility of the terminal wealth exceeding a minimum guarantee. Technically, we model agent’s preferences with an S-shaped utility functions to accommodate the possibility that gap risk occurs, and address the optimization problem via a generalization of the martingale approach that turns to be valid under market incompleteness in a jump-diffusion framework. ...

July 30, 2024 · 2 min · Research Team

AI-Powered Energy Algorithmic Trading: Integrating Hidden Markov Models with Neural Networks

AI-Powered Energy Algorithmic Trading: Integrating Hidden Markov Models with Neural Networks ArXiv ID: 2407.19858 “View on arXiv” Authors: Unknown Abstract In quantitative finance, machine learning methods are essential for alpha generation. This study introduces a new approach that combines Hidden Markov Models (HMM) and neural networks, integrated with Black-Litterman portfolio optimization. During the COVID period (2019-2022), this dual-model approach achieved a 83% return with a Sharpe ratio of 0.77. It incorporates two risk models to enhance risk management, showing efficiency during volatile periods. The methodology was implemented on the QuantConnect platform, which was chosen for its robust framework and experimental reproducibility. The system, which predicts future price movements, includes a three-year warm-up to ensure proper algorithm function. It targets highly liquid, large-cap energy stocks to ensure stable and predictable performance while also considering broker payments. The dual-model alpha system utilizes log returns to select the optimal state based on the historical performance. It combines state predictions with neural network outputs, which are based on historical data, to generate trading signals. This study examined the architecture of the trading system, data pre-processing, training, and performance. The full code and backtesting data are available under the QuantConnect terms: https://github.com/tiagomonteiro0715/AI-Powered-Energy-Algorithmic-Trading-Integrating-Hidden-Markov-Models-with-Neural-Networks ...

July 29, 2024 · 2 min · Research Team

Designing Time-Series Models With Hypernetworks & Adversarial Portfolios

Designing Time-Series Models With Hypernetworks & Adversarial Portfolios ArXiv ID: 2407.20352 “View on arXiv” Authors: Unknown Abstract This article describes the methods that achieved 4th and 6th place in the forecasting and investment challenges, respectively, of the M6 competition, ultimately securing the 1st place in the overall duathlon ranking. In the forecasting challenge, we tested a novel meta-learning model that utilizes hypernetworks to design a parametric model tailored to a specific family of forecasting tasks. This approach allowed us to leverage similarities observed across individual forecasting tasks while also acknowledging potential heterogeneity in their data generating processes. The model’s training can be directly performed with backpropagation, eliminating the need for reliance on higher-order derivatives and is equivalent to a simultaneous search over the space of parametric functions and their optimal parameter values. The proposed model’s capabilities extend beyond M6, demonstrating superiority over state-of-the-art meta-learning methods in the sinusoidal regression task and outperforming conventional parametric models on time-series from the M4 competition. In the investment challenge, we adjusted portfolio weights to induce greater or smaller correlation between our submission and that of other participants, depending on the current ranking, aiming to maximize the probability of achieving a good rank. ...

July 29, 2024 · 2 min · Research Team

Inferring financial stock returns correlation from complex network analysis

Inferring financial stock returns correlation from complex network analysis ArXiv ID: 2407.20380 “View on arXiv” Authors: Unknown Abstract Financial stock returns correlations have been studied in the prism of random matrix theory, to distinguish the signal from the “noise”. Eigenvalues of the matrix that are above the rescaled Marchenko Pastur distribution can be interpreted as collective modes behavior while the modes under are usually considered as noise. In this analysis we use complex network analysis to simulate the “noise” and the “market” component of the return correlations, by introducing some meaningful correlations in simulated geometric Brownian motion for the stocks. We find that the returns correlation matrix is dominated by stocks with high eigenvector centrality and clustering found in the network. We then use simulated “market” random walks to build an optimal portfolio and find that the overall return performs better than using the historical mean-variance data, up to 50% on short time scale. ...

July 29, 2024 · 2 min · Research Team

PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms

PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms ArXiv ID: 2407.19857 “View on arXiv” Authors: Unknown Abstract Portfolio Optimization (PO) is a financial problem aiming to maximize the net gains while minimizing the risks in a given investment portfolio. The novelty of Quantum algorithms lies in their acclaimed potential and capability to solve complex problems given the underlying Quantum Computing (QC) infrastructure. Utilizing QC’s applicable strengths to the finance industry’s problems, such as PO, allows us to solve these problems using quantum-based algorithms such as Variational Quantum Eigensolver (VQE) and Quantum Approximate Optimization Algorithm (QAOA). While the Quantum potential for finance is highly impactful, the architecture and composition of the quantum circuits have not yet been properly defined as robust financial frameworks/algorithms as state of the art in present literature for research and design development purposes. In this work, we propose a novel scalable framework, denoted PO-QA, to systematically investigate the variation of quantum parameters (such as rotation blocks, repetitions, and entanglement types) to observe their subtle effect on the overall performance. In our paper, the performance is measured and dictated by convergence to similar ground-state energy values for resultant optimal solutions by each algorithm variation set for QAOA and VQE to the exact eigensolver (classical solution). Our results provide effective insights into comprehending PO from the lens of Quantum Machine Learning in terms of convergence to the classical solution, which is used as a benchmark. This study paves the way for identifying efficient configurations of quantum circuits for solving PO and unveiling their inherent inter-relationships. ...

July 29, 2024 · 2 min · Research Team

Risk management in multi-objective portfolio optimization under uncertainty

Risk management in multi-objective portfolio optimization under uncertainty ArXiv ID: 2407.19936 “View on arXiv” Authors: Unknown Abstract In portfolio optimization, decision makers face difficulties from uncertainties inherent in real-world scenarios. These uncertainties significantly influence portfolio outcomes in both classical and multi-objective Markowitz models. To address these challenges, our research explores the power of robust multi-objective optimization. Since portfolio managers frequently measure their solutions against benchmarks, we enhance the multi-objective min-regret robustness concept by incorporating these benchmark comparisons. This approach bridges the gap between theoretical models and real-world investment scenarios, offering portfolio managers more reliable and adaptable strategies for navigating market uncertainties. Our framework provides a more nuanced and practical approach to portfolio optimization under real-world conditions. ...

July 29, 2024 · 2 min · Research Team

Enhancing Black-Scholes Delta Hedging via Deep Learning

Enhancing Black-Scholes Delta Hedging via Deep Learning ArXiv ID: 2407.19367 “View on arXiv” Authors: Unknown Abstract This paper proposes a deep delta hedging framework for options, utilizing neural networks to learn the residuals between the hedging function and the implied Black-Scholes delta. This approach leverages the smoother properties of these residuals, enhancing deep learning performance. Utilizing ten years of daily S&P 500 index option data, our empirical analysis demonstrates that learning the residuals, using the mean squared one-step hedging error as the loss function, significantly improves hedging performance over directly learning the hedging function, often by more than 100%. Adding input features when learning the residuals enhances hedging performance more for puts than calls, with market sentiment being less crucial. Furthermore, learning the residuals with three years of data matches the hedging performance of directly learning with ten years of data, proving that our method demands less data. ...

July 28, 2024 · 2 min · Research Team