false

A theoretical framework for fees in AMMs

A theoretical framework for fees in AMMs ArXiv ID: 2404.03976 “View on arXiv” Authors: Unknown Abstract In the ever evolving landscape of decentralized finance automated market makers (AMMs) play a key role: they provide a market place for trading assets in a decentralized manner. For so-called bluechip pairs, arbitrage activity provides a major part of the revenue generation of AMMs but also a major source of loss due to the so-called informed orderflow. Finding ways to minimize those losses while still keeping uninformed trading activity alive is a major problem in the field. In this paper we will investigate the mechanics of said arbitrage and try to understand how AMMs can maximize the revenue creation or in other words minimize the losses. To that end, we model the dynamics of arbitrage activity for a concrete implementation of a pool and study its sensitivity to the choice of fee aiming to maximize the value retention. We manage to map the ensuing dynamics to that of a random walk with a specific reward scheme that provides a convenient starting point for further studies. ...

April 5, 2024 · 2 min · Research Team

Regularization for electricity price forecasting

Regularization for electricity price forecasting ArXiv ID: 2404.03968 “View on arXiv” Authors: Unknown Abstract The most commonly used form of regularization typically involves defining the penalty function as a L1 or L2 norm. However, numerous alternative approaches remain untested in practical applications. In this study, we apply ten different penalty functions to predict electricity prices and evaluate their performance under two different model structures and in two distinct electricity markets. The study reveals that LQ and elastic net consistently produce more accurate forecasts compared to other regularization types. In particular, they were the only types of penalty functions that consistently produced more accurate forecasts than the most commonly used LASSO. Furthermore, the results suggest that cross-validation outperforms Bayesian information criteria for parameter optimization, and performs as well as models with ex-post parameter selection. ...

April 5, 2024 · 2 min · Research Team

Social Media Emotions and Market Behavior

Social Media Emotions and Market Behavior ArXiv ID: 2404.03792 “View on arXiv” Authors: Unknown Abstract I explore the relationship between investor emotions expressed on social media and asset prices. The field has seen a proliferation of models aimed at extracting firm-level sentiment from social media data, though the behavior of these models often remains uncertain. Against this backdrop, my study employs EmTract, an open-source emotion model, to test whether the emotional responses identified on social media platforms align with expectations derived from controlled laboratory settings. This step is crucial in validating the reliability of digital platforms in reflecting genuine investor sentiment. My findings reveal that firm-specific investor emotions behave similarly to lab experiments and can forecast daily asset price movements. These impacts are larger when liquidity is lower or short interest is higher. My findings on the persistent influence of sadness on subsequent returns, along with the insignificance of the one-dimensional valence metric, underscores the importance of dissecting emotional states. This approach allows for a deeper and more accurate understanding of the intricate ways in which investor sentiments drive market movements. ...

April 4, 2024 · 2 min · Research Team

Analyzing Economic Convergence Across the Americas: A Survival Analysis Approach to GDP per Capita Trajectories

Analyzing Economic Convergence Across the Americas: A Survival Analysis Approach to GDP per Capita Trajectories ArXiv ID: 2404.04282 “View on arXiv” Authors: Unknown Abstract By integrating survival analysis, machine learning algorithms, and economic interpretation, this research examines the temporal dynamics associated with attaining a 5 percent rise in purchasing power parity-adjusted GDP per capita over a period of 120 months (2013-2022). A comparative investigation reveals that DeepSurv is proficient at capturing non-linear interactions, although standard models exhibit comparable performance under certain circumstances. The weight matrix evaluates the economic ramifications of vulnerabilities, risks, and capacities. In order to meet the GDPpc objective, the findings emphasize the need of a balanced approach to risk-taking, strategic vulnerability reduction, and investment in governmental capacities and social cohesiveness. Policy guidelines promote individualized approaches that take into account the complex dynamics at play while making decisions. ...

April 3, 2024 · 2 min · Research Team

Quantum computing approach to realistic ESG-friendly stock portfolios

Quantum computing approach to realistic ESG-friendly stock portfolios ArXiv ID: 2404.02582 “View on arXiv” Authors: Unknown Abstract Finding an optimal balance between risk and returns in investment portfolios is a central challenge in quantitative finance, often addressed through Markowitz portfolio theory (MPT). While traditional portfolio optimization is carried out in a continuous fashion, as if stocks could be bought in fractional increments, practical implementations often resort to approximations, as fractional stocks are typically not tradeable. While these approximations are effective for large investment budgets, they deteriorate as budgets decrease. To alleviate this issue, a discrete Markowitz portfolio theory (DMPT) with finite budgets and integer stock weights can be formulated, but results in a non-polynomial (NP)-hard problem. Recent progress in quantum processing units (QPUs), including quantum annealers, makes solving DMPT problems feasible. Our study explores portfolio optimization on quantum annealers, establishing a mapping between continuous and discrete Markowitz portfolio theories. We find that correctly normalized discrete portfolios converge to continuous solutions as budgets increase. Our DMPT implementation provides efficient frontier solutions, outperforming traditional rounding methods, even for moderate budgets. Responding to the demand for environmentally and socially responsible investments, we enhance our discrete portfolio optimization with ESG (environmental, social, governance) ratings for EURO STOXX 50 index stocks. We introduce a utility function incorporating ESG ratings to balance risk, return, and ESG-friendliness, and discuss implications for ESG-aware investors. ...

April 3, 2024 · 2 min · Research Team

The Life Care Annuity: enhancing product features and refining pricing methods

The Life Care Annuity: enhancing product features and refining pricing methods ArXiv ID: 2404.02858 “View on arXiv” Authors: Unknown Abstract The state-of-the-art proposes Life Care Annuities, that have been recently designed as variable annuity contracts with Long-Term Care payouts and Guaranteed Lifelong Withdrawal Benefits. In this paper, we propose more general features for these insurance products and refine their pricing methods. We name our proposed product GLWB-LTC''. In particular, as to the product features, we allow dynamic withdrawal strategies, including the surrender option. Furthermore, we consider stochastic interest rates, described by a Cox-Ingersoll-Ross process. As to the numerical methods, we solve the stochastic control problem involved by the selection of the optimal withdrawal strategy through a robust tree method, which outperforms the Monte Carlo approach. We name this method Tree-LTC’’, and we use it to estimate the fair price of the product, as some relevant parameters vary, such as, for instance, the entry age of the policyholder. Furthermore, our numerical results show how the optimal withdrawal strategy varies over time with the health status of the policyholder. Our findings stress the important advantage of flexible withdrawal strategies in relation to insurance policies offering protection from health risks. Indeed, the policyholder is given more choice about how much to save for protection from the possible disability states at future times. ...

April 3, 2024 · 2 min · Research Team

BERTopic-Driven Stock Market Predictions: Unraveling Sentiment Insights

BERTopic-Driven Stock Market Predictions: Unraveling Sentiment Insights ArXiv ID: 2404.02053 “View on arXiv” Authors: Unknown Abstract This paper explores the intersection of Natural Language Processing (NLP) and financial analysis, focusing on the impact of sentiment analysis in stock price prediction. We employ BERTopic, an advanced NLP technique, to analyze the sentiment of topics derived from stock market comments. Our methodology integrates this sentiment analysis with various deep learning models, renowned for their effectiveness in time series and stock prediction tasks. Through comprehensive experiments, we demonstrate that incorporating topic sentiment notably enhances the performance of these models. The results indicate that topics in stock market comments provide implicit, valuable insights into stock market volatility and price trends. This study contributes to the field by showcasing the potential of NLP in enriching financial analysis and opens up avenues for further research into real-time sentiment analysis and the exploration of emotional and contextual aspects of market sentiment. The integration of advanced NLP techniques like BERTopic with traditional financial analysis methods marks a step forward in developing more sophisticated tools for understanding and predicting market behaviors. ...

April 2, 2024 · 2 min · Research Team

Intelligent Optimization of Mine Environmental Damage Assessment and Repair Strategies Based on Deep Learning

Intelligent Optimization of Mine Environmental Damage Assessment and Repair Strategies Based on Deep Learning ArXiv ID: 2404.01624 “View on arXiv” Authors: Unknown Abstract In recent decades, financial quantification has emerged and matured rapidly. For financial institutions such as funds, investment institutions are increasingly dissatisfied with the situation of passively constructing investment portfolios with average market returns, and are paying more and more attention to active quantitative strategy investment portfolios. This requires the introduction of active stock investment fund management models. Currently, in my country’s stock fund investment market, there are many active quantitative investment strategies, and the algorithms used vary widely, such as SVM, random forest, RNN recurrent memory network, etc. This article focuses on this trend, using the emerging LSTM-GRU gate-controlled long short-term memory network model in the field of financial stock investment as a basis to build a set of active investment stock strategies, and combining it with SVM, which has been widely used in the field of quantitative stock investment. Comparing models such as RNN, theoretically speaking, compared to SVM that simply relies on kernel functions for high-order mapping and classification of data, neural network algorithms such as RNN and LSTM-GRU have better principles and are more suitable for processing financial stock data. Then, through multiple By comparison, it was finally found that the LSTM- GRU gate-controlled long short-term memory network has a better accuracy. By selecting the LSTM-GRU algorithm to construct a trading strategy based on the Shanghai and Shenzhen 300 Index constituent stocks, the parameters were adjusted and the neural layer connection was adjusted. Finally, It has significantly outperformed the benchmark index CSI 300 over the long term. The conclusion of this article is that the research results can provide certain quantitative strategy references for financial institutions to construct active stock investment portfolios. ...

April 2, 2024 · 2 min · Research Team

Postprocessing of point predictions for probabilistic forecasting of day-ahead electricity prices: The benefits of using isotonic distributional regression

Postprocessing of point predictions for probabilistic forecasting of day-ahead electricity prices: The benefits of using isotonic distributional regression ArXiv ID: 2404.02270 “View on arXiv” Authors: Unknown Abstract Operational decisions relying on predictive distributions of electricity prices can result in significantly higher profits compared to those based solely on point forecasts. However, the majority of models developed in both academic and industrial settings provide only point predictions. To address this, we examine three postprocessing methods for converting point forecasts of day-ahead electricity prices into probabilistic ones: Quantile Regression Averaging, Conformal Prediction, and the recently introduced Isotonic Distributional Regression. We find that while the latter demonstrates the most varied behavior, it contributes the most to the ensemble of the three predictive distributions, as measured by Shapley values. Remarkably, the performance of the combination is superior to that of state-of-the-art Distributional Deep Neural Networks over two 4.5-year test periods from the German and Spanish power markets, spanning the COVID pandemic and the war in Ukraine. ...

April 2, 2024 · 2 min · Research Team

Supervised Autoencoder MLP for Financial Time Series Forecasting

Supervised Autoencoder MLP for Financial Time Series Forecasting ArXiv ID: 2404.01866 “View on arXiv” Authors: Unknown Abstract This paper investigates the enhancement of financial time series forecasting with the use of neural networks through supervised autoencoders, aiming to improve investment strategy performance. It specifically examines the impact of noise augmentation and triple barrier labeling on risk-adjusted returns, using the Sharpe and Information Ratios. The study focuses on the S&P 500 index, EUR/USD, and BTC/USD as the traded assets from January 1, 2010, to April 30, 2022. Findings indicate that supervised autoencoders, with balanced noise augmentation and bottleneck size, significantly boost strategy effectiveness. However, excessive noise and large bottleneck sizes can impair performance, highlighting the importance of precise parameter tuning. This paper also presents a derivation of a novel optimization metric that can be used with triple barrier labeling. The results of this study have substantial policy implications, suggesting that financial institutions and regulators could leverage techniques presented to enhance market stability and investor protection, while also encouraging more informed and strategic investment approaches in various financial sectors. ...

April 2, 2024 · 2 min · Research Team