false

RAGIC: Risk-Aware Generative Adversarial Model for Stock Interval Construction

RAGIC: Risk-Aware Generative Adversarial Model for Stock Interval Construction ArXiv ID: 2402.10760 “View on arXiv” Authors: Unknown Abstract Efforts to predict stock market outcomes have yielded limited success due to the inherently stochastic nature of the market, influenced by numerous unpredictable factors. Many existing prediction approaches focus on single-point predictions, lacking the depth needed for effective decision-making and often overlooking market risk. To bridge this gap, we propose a novel model, RAGIC, which introduces sequence generation for stock interval prediction to quantify uncertainty more effectively. Our approach leverages a Generative Adversarial Network (GAN) to produce future price sequences infused with randomness inherent in financial markets. RAGIC’s generator includes a risk module, capturing the risk perception of informed investors, and a temporal module, accounting for historical price trends and seasonality. This multi-faceted generator informs the creation of risk-sensitive intervals through statistical inference, incorporating horizon-wise insights. The interval’s width is carefully adjusted to reflect market volatility. Importantly, our approach relies solely on publicly available data and incurs only low computational overhead. RAGIC’s evaluation across globally recognized broad-based indices demonstrates its balanced performance, offering both accuracy and informativeness. Achieving a consistent 95% coverage, RAGIC maintains a narrow interval width. This promising outcome suggests that our approach effectively addresses the challenges of stock market prediction while incorporating vital risk considerations. ...

February 16, 2024 · 2 min · Research Team

Towards Financially Inclusive Credit Products Through Financial Time Series Clustering

Towards Financially Inclusive Credit Products Through Financial Time Series Clustering ArXiv ID: 2402.11066 “View on arXiv” Authors: Unknown Abstract Financial inclusion ensures that individuals have access to financial products and services that meet their needs. As a key contributing factor to economic growth and investment opportunity, financial inclusion increases consumer spending and consequently business development. It has been shown that institutions are more profitable when they provide marginalised social groups access to financial services. Customer segmentation based on consumer transaction data is a well-known strategy used to promote financial inclusion. While the required data is available to modern institutions, the challenge remains that segment annotations are usually difficult and/or expensive to obtain. This prevents the usage of time series classification models for customer segmentation based on domain expert knowledge. As a result, clustering is an attractive alternative to partition customers into homogeneous groups based on the spending behaviour encoded within their transaction data. In this paper, we present a solution to one of the key challenges preventing modern financial institutions from providing financially inclusive credit, savings and insurance products: the inability to understand consumer financial behaviour, and hence risk, without the introduction of restrictive conventional credit scoring techniques. We present a novel time series clustering algorithm that allows institutions to understand the financial behaviour of their customers. This enables unique product offerings to be provided based on the needs of the customer, without reliance on restrictive credit practices. ...

February 16, 2024 · 3 min · Research Team

Alpha-GPT 2.0: Human-in-the-Loop AI for Quantitative Investment

Alpha-GPT 2.0: Human-in-the-Loop AI for Quantitative Investment ArXiv ID: 2402.09746 “View on arXiv” Authors: Unknown Abstract Recently, we introduced a new paradigm for alpha mining in the realm of quantitative investment, developing a new interactive alpha mining system framework, Alpha-GPT. This system is centered on iterative Human-AI interaction based on large language models, introducing a Human-in-the-Loop approach to alpha discovery. In this paper, we present the next-generation Alpha-GPT 2.0 \footnote{“Draft. Work in progress”}, a quantitative investment framework that further encompasses crucial modeling and analysis phases in quantitative investment. This framework emphasizes the iterative, interactive research between humans and AI, embodying a Human-in-the-Loop strategy throughout the entire quantitative investment pipeline. By assimilating the insights of human researchers into the systematic alpha research process, we effectively leverage the Human-in-the-Loop approach, enhancing the efficiency and precision of quantitative investment research. ...

February 15, 2024 · 2 min · Research Team

Combating Financial Crimes with Unsupervised Learning Techniques: Clustering and Dimensionality Reduction for Anti-Money Laundering

Combating Financial Crimes with Unsupervised Learning Techniques: Clustering and Dimensionality Reduction for Anti-Money Laundering ArXiv ID: 2403.00777 “View on arXiv” Authors: Unknown Abstract Anti-Money Laundering (AML) is a crucial task in ensuring the integrity of financial systems. One keychallenge in AML is identifying high-risk groups based on their behavior. Unsupervised learning, particularly clustering, is a promising solution for this task. However, the use of hundreds of features todescribe behavior results in a highdimensional dataset that negatively impacts clustering performance.In this paper, we investigate the effectiveness of combining clustering method agglomerative hierarchicalclustering with four dimensionality reduction techniques -Independent Component Analysis (ICA), andKernel Principal Component Analysis (KPCA), Singular Value Decomposition (SVD), Locality Preserving Projections (LPP)- to overcome the issue of high-dimensionality in AML data and improve clusteringresults. This study aims to provide insights into the most effective way of reducing the dimensionality ofAML data and enhance the accuracy of clustering-based AML systems. The experimental results demonstrate that KPCA outperforms other dimension reduction techniques when combined with agglomerativehierarchical clustering. This superiority is observed in the majority of situations, as confirmed by threedistinct validation indices. ...

February 14, 2024 · 2 min · Research Team

Detecting Anomalous Events in Object-centric Business Processes via Graph Neural Networks

Detecting Anomalous Events in Object-centric Business Processes via Graph Neural Networks ArXiv ID: 2403.00775 “View on arXiv” Authors: Unknown Abstract Detecting anomalies is important for identifying inefficiencies, errors, or fraud in business processes. Traditional process mining approaches focus on analyzing ‘flattened’, sequential, event logs based on a single case notion. However, many real-world process executions exhibit a graph-like structure, where events can be associated with multiple cases. Flattening event logs requires selecting a single case identifier which creates a gap with the real event data and artificially introduces anomalies in the event logs. Object-centric process mining avoids these limitations by allowing events to be related to different cases. This study proposes a novel framework for anomaly detection in business processes that exploits graph neural networks and the enhanced information offered by object-centric process mining. We first reconstruct and represent the process dependencies of the object-centric event logs as attributed graphs and then employ a graph convolutional autoencoder architecture to detect anomalous events. Our results show that our approach provides promising performance in detecting anomalies at the activity type and attributes level, although it struggles to detect anomalies in the temporal order of events. ...

February 14, 2024 · 2 min · Research Team

Exact simulation scheme for the Ornstein-Uhlenbeck driven stochastic volatility model with the Karhunen-Loève expansions

Exact simulation scheme for the Ornstein-Uhlenbeck driven stochastic volatility model with the Karhunen-Loève expansions ArXiv ID: 2402.09243 “View on arXiv” Authors: Unknown Abstract This study proposes a new exact simulation scheme of the Ornstein-Uhlenbeck driven stochastic volatility model. With the Karhunen-Loève expansions, the stochastic volatility path following the Ornstein-Uhlenbeck process is expressed as a sine series, and the time integrals of volatility and variance are analytically derived as the sums of independent normal random variates. The new method is several hundred times faster than Li and Wu [“Eur. J. Oper. Res., 2019, 275(2), 768-779”] that relies on computationally expensive numerical transform inversion. The simulation algorithm is further improved with the conditional Monte-Carlo method and the martingale-preserving control variate on the spot price. ...

February 14, 2024 · 2 min · Research Team

Optimal Automated Market Makers: Differentiable Economics and Strong Duality

Optimal Automated Market Makers: Differentiable Economics and Strong Duality ArXiv ID: 2402.09129 “View on arXiv” Authors: Unknown Abstract The role of a market maker is to simultaneously offer to buy and sell quantities of goods, often a financial asset such as a share, at specified prices. An automated market maker (AMM) is a mechanism that offers to trade according to some predetermined schedule; the best choice of this schedule depends on the market maker’s goals. The literature on the design of AMMs has mainly focused on prediction markets with the goal of information elicitation. More recent work motivated by DeFi has focused instead on the goal of profit maximization, but considering only a single type of good (traded with a numeraire), including under adverse selection (Milionis et al. 2022). Optimal market making in the presence of multiple goods, including the possibility of complex bundling behavior, is not well understood. In this paper, we show that finding an optimal market maker is dual to an optimal transport problem, with specific geometric constraints on the transport plan in the dual. We show that optimal mechanisms for multiple goods and under adverse selection can take advantage of bundling, both improved prices for bundled purchases and sales as well as sometimes accepting payment “in kind.” We present conjectures of optimal mechanisms in additional settings which show further complex behavior. From a methodological perspective, we make essential use of the tools of differentiable economics to generate conjectures of optimal mechanisms, and give a proof-of-concept for the use of such tools in guiding theoretical investigations. ...

February 14, 2024 · 2 min · Research Team

Randomized Control in Performance Analysis and Empirical Asset Pricing

Randomized Control in Performance Analysis and Empirical Asset Pricing ArXiv ID: 2403.00009 “View on arXiv” Authors: Unknown Abstract The present article explores the application of randomized control techniques in empirical asset pricing and performance evaluation. It introduces geometric random walks, a class of Markov chain Monte Carlo methods, to construct flexible control groups in the form of random portfolios adhering to investor constraints. The sampling-based methods enable an exploration of the relationship between academically studied factor premia and performance in a practical setting. In an empirical application, the study assesses the potential to capture premias associated with size, value, quality, and momentum within a strongly constrained setup, exemplified by the investor guidelines of the MSCI Diversified Multifactor index. Additionally, the article highlights issues with the more traditional use case of random portfolios for drawing inferences in performance evaluation, showcasing challenges related to the intricacies of high-dimensional geometry. ...

February 14, 2024 · 2 min · Research Team

Regional inflation analysis using social network data

Regional inflation analysis using social network data ArXiv ID: 2403.00774 “View on arXiv” Authors: Unknown Abstract Inflation is one of the most important macroeconomic indicators that have a great impact on the population of any country and region. Inflation is influenced by range of factors, one of which is inflation expectations. Many central banks take this factor into consideration while implementing monetary policy within the inflation targeting regime. Nowadays, a lot of people are active users of the Internet, especially social networks. There is a hypothesis that people search, read, and discuss mainly only those issues that are of particular interest to them. It is logical to assume that the dynamics of prices may also be in the focus of user discussions. So, such discussions could be regarded as an alternative source of more rapid information about inflation expectations. This study is based on unstructured data from Vkontakte social network to analyze upward and downward inflationary trends (on the example of the Omsk region). The sample of more than 8.5 million posts was collected between January 2010 and May 2022. The authors used BERT neural networks to solve the problem. These models demonstrated better results than the benchmarks (e.g., logistic regression, decision tree classifier, etc.). It makes possible to define pro-inflationary and disinflationary types of keywords in different contexts and get their visualization with SHAP method. This analysis provides additional operational information about inflationary processes at the regional level The proposed approach can be scaled for other regions. At the same time the limitation of the work is the time and power costs for the initial training of similar models for all regions of Russia. ...

February 14, 2024 · 2 min · Research Team

The Boosted Difference of Convex Functions Algorithm for Value-at-Risk Constrained Portfolio Optimization

The Boosted Difference of Convex Functions Algorithm for Value-at-Risk Constrained Portfolio Optimization ArXiv ID: 2402.09194 “View on arXiv” Authors: Unknown Abstract A highly relevant problem of modern finance is the design of Value-at-Risk (VaR) optimal portfolios. Due to contemporary financial regulations, banks and other financial institutions are tied to use the risk measure to control their credit, market, and operational risks. Despite its practical relevance, the non-convexity induced by VaR constraints in portfolio optimization problems remains a major challenge. To address this complexity more effectively, this paper proposes the use of the Boosted Difference-of-Convex Functions Algorithm (BDCA) to approximately solve a Markowitz-style portfolio selection problem with a VaR constraint. As one of the key contributions, we derive a novel line search framework that allows the application of the algorithm to Difference-of-Convex functions (DC) programs where both components are non-smooth. Moreover, we prove that the BDCA linearly converges to a Karush-Kuhn-Tucker point for the problem at hand using the Kurdyka-Lojasiewicz property. We also outline that this result can be generalized to a broader class of piecewise-linear DC programs with linear equality and inequality constraints. In the practical part, extensive numerical experiments under consideration of best practices then demonstrate the robustness of the BDCA under challenging constraint settings and adverse initialization. In particular, the algorithm consistently identifies the highest number of feasible solutions even under the most challenging conditions, while other approaches from chance-constrained programming lead to a complete failure in these settings. Due to the open availability of all data sets and code, this paper further provides a practical guide for transparent and easily reproducible comparisons of VaR-constrained portfolio selection problems in Python. ...

February 14, 2024 · 2 min · Research Team