false

Closed-form solutions for generic N-token AMM arbitrage

Closed-form solutions for generic N-token AMM arbitrage ArXiv ID: 2402.06731 “View on arXiv” Authors: Unknown Abstract Convex optimisation has provided a mechanism to determine arbitrage trades on automated market markets (AMMs) since almost their inception. Here we outline generic closed-form solutions for $N$-token geometric mean market maker pool arbitrage, that in simulation (with synthetic and historic data) provide better arbitrage opportunities than convex optimisers and is able to capitalise on those opportunities sooner. Furthermore, the intrinsic parallelism of the proposed approach (unlike convex optimisation) offers the ability to scale on GPUs, opening up a new approach to AMM modelling by offering an alternative to numerical-solver-based methods. The lower computational cost of running this new mechanism can also enable on-chain arbitrage bots for multi-asset pools. ...

February 9, 2024 · 2 min · Research Team

FNSPID: A Comprehensive Financial News Dataset in Time Series

FNSPID: A Comprehensive Financial News Dataset in Time Series ArXiv ID: 2402.06698 “View on arXiv” Authors: Unknown Abstract Financial market predictions utilize historical data to anticipate future stock prices and market trends. Traditionally, these predictions have focused on the statistical analysis of quantitative factors, such as stock prices, trading volumes, inflation rates, and changes in industrial production. Recent advancements in large language models motivate the integrated financial analysis of both sentiment data, particularly market news, and numerical factors. Nonetheless, this methodology frequently encounters constraints due to the paucity of extensive datasets that amalgamate both quantitative and qualitative sentiment analyses. To address this challenge, we introduce a large-scale financial dataset, namely, Financial News and Stock Price Integration Dataset (FNSPID). It comprises 29.7 million stock prices and 15.7 million time-aligned financial news records for 4,775 S&P500 companies, covering the period from 1999 to 2023, sourced from 4 stock market news websites. We demonstrate that FNSPID excels existing stock market datasets in scale and diversity while uniquely incorporating sentiment information. Through financial analysis experiments on FNSPID, we propose: (1) the dataset’s size and quality significantly boost market prediction accuracy; (2) adding sentiment scores modestly enhances performance on the transformer-based model; (3) a reproducible procedure that can update the dataset. Completed work, code, documentation, and examples are available at github.com/Zdong104/FNSPID. FNSPID offers unprecedented opportunities for the financial research community to advance predictive modeling and analysis. ...

February 9, 2024 · 2 min · Research Team

A Study on Stock Forecasting Using Deep Learning and Statistical Models

A Study on Stock Forecasting Using Deep Learning and Statistical Models ArXiv ID: 2402.06689 “View on arXiv” Authors: Unknown Abstract Predicting a fast and accurate model for stock price forecasting is been a challenging task and this is an active area of research where it is yet to be found which is the best way to forecast the stock price. Machine learning, deep learning and statistical analysis techniques are used here to get the accurate result so the investors can see the future trend and maximize the return of investment in stock trading. This paper will review many deep learning algorithms for stock price forecasting. We use a record of s&p 500 index data for training and testing. The survey motive is to check various deep learning and statistical model techniques for stock price forecasting that are Moving Averages, ARIMA which are statistical techniques and LSTM, RNN, CNN, and FULL CNN which are deep learning models. It will discuss various models, including the Auto regression integration moving average model, the Recurrent neural network model, the long short-term model which is the type of RNN used for long dependency for data, the convolutional neural network model, and the full convolutional neural network model, in terms of error calculation or percentage of accuracy that how much it is accurate which measures by the function like Root mean square error, mean absolute error, mean squared error. The model can be used to predict the stock price by checking the low MAE value as lower the MAE value the difference between the predicting and the actual value will be less and this model will predict the price more accurately than other models. ...

February 8, 2024 · 3 min · Research Team

Coarse graining correlation matrices according to macrostructures: Financial markets as a paradigm

Coarse graining correlation matrices according to macrostructures: Financial markets as a paradigm ArXiv ID: 2402.05364 “View on arXiv” Authors: Unknown Abstract We analyze correlation structures in financial markets by coarse graining the Pearson correlation matrices according to market sectors to obtain Guhr matrices using Guhr’s correlation method according to Ref. [“P. Rinn {"\it et. al.”}, Europhysics Letters 110, 68003 (2015)"]. We compare the results for the evolution of market states and the corresponding transition matrices with those obtained using Pearson correlation matrices. The behavior of market states is found to be similar for both the coarse grained and Pearson matrices. However, the number of relevant variables is reduced by orders of magnitude. ...

February 8, 2024 · 2 min · Research Team

Navigating Market Turbulence: Insights from Causal Network Contagion Value at Risk

Navigating Market Turbulence: Insights from Causal Network Contagion Value at Risk ArXiv ID: 2402.06032 “View on arXiv” Authors: Unknown Abstract Accurately defining, measuring and mitigating risk is a cornerstone of financial risk management, especially in the presence of financial contagion. Traditional correlation-based risk assessment methods often struggle under volatile market conditions, particularly in the face of external shocks, highlighting the need for a more robust and invariant predictive approach. This paper introduces the Causal Network Contagion Value at Risk (Causal-NECO VaR), a novel methodology that significantly advances causal inference in financial risk analysis. Embracing a causal network framework, this method adeptly captures and analyses volatility and spillover effects, effectively setting it apart from conventional contagion-based VaR models. Causal-NECO VaR’s key innovation lies in its ability to derive directional influences among assets from observational data, thereby offering robust risk predictions that remain invariant to market shocks and systemic changes. A comprehensive simulation study and the application to the Forex market show the robustness of the method. Causal-NECO VaR not only demonstrates predictive accuracy, but also maintains its reliability in unstable financial environments, offering clearer risk assessments even amidst unforeseen market disturbances. This research makes a significant contribution to the field of risk management and financial stability, presenting a causal approach to the computation of VaR. It emphasises the model’s superior resilience and invariant predictive power, essential for navigating the complexities of today’s ever-evolving financial markets. ...

February 8, 2024 · 2 min · Research Team

Cyber risk and the cross-section of stock returns

Cyber risk and the cross-section of stock returns ArXiv ID: 2402.04775 “View on arXiv” Authors: Unknown Abstract We extract firms’ cyber risk with a machine learning algorithm measuring the proximity between their disclosures and a dedicated cyber corpus. Our approach outperforms dictionary methods, uses full disclosure and not devoted-only sections, and generates a cyber risk measure uncorrelated with other firms’ characteristics. We find that a portfolio of US-listed stocks in the high cyber risk quantile generates an excess return of 18.72% p.a. Moreover, a long-short cyber risk portfolio has a significant and positive risk premium of 6.93% p.a., robust to all factors’ benchmarks. Finally, using a Bayesian asset pricing method, we show that our cyber risk factor is the essential feature that allows any multi-factor model to price the cross-section of stock returns. ...

February 7, 2024 · 2 min · Research Team

Downside Risk Reduction Using Regime-Switching Signals: A Statistical Jump Model Approach

Downside Risk Reduction Using Regime-Switching Signals: A Statistical Jump Model Approach ArXiv ID: 2402.05272 “View on arXiv” Authors: Unknown Abstract This article investigates a regime-switching investment strategy aimed at mitigating downside risk by reducing market exposure during anticipated unfavorable market regimes. We highlight the statistical jump model (JM) for market regime identification, a recently developed robust model that distinguishes itself from traditional Markov-switching models by enhancing regime persistence through a jump penalty applied at each state transition. Our JM utilizes a feature set comprising risk and return measures derived solely from the return series, with the optimal jump penalty selected through a time-series cross-validation method that directly optimizes strategy performance. Our empirical analysis evaluates the realistic out-of-sample performance of various strategies on major equity indices from the US, Germany, and Japan from 1990 to 2023, in the presence of transaction costs and trading delays. The results demonstrate the consistent outperformance of the JM-guided strategy in reducing risk metrics such as volatility and maximum drawdown, and enhancing risk-adjusted returns like the Sharpe ratio, when compared to both hidden Markov model-guided strategy and the buy-and-hold strategy. These findings underline the enhanced persistence, practicality, and versatility of strategies utilizing JMs for regime-switching signals. ...

February 7, 2024 · 2 min · Research Team

Non-Parametric Estimation of Multi-dimensional Marked Hawkes Processes

Non-Parametric Estimation of Multi-dimensional Marked Hawkes Processes ArXiv ID: 2402.04740 “View on arXiv” Authors: Unknown Abstract An extension of the Hawkes process, the Marked Hawkes process distinguishes itself by featuring variable jump size across each event, in contrast to the constant jump size observed in a Hawkes process without marks. While extensive literature has been dedicated to the non-parametric estimation of both the linear and non-linear Hawkes process, there remains a significant gap in the literature regarding the marked Hawkes process. In response to this, we propose a methodology for estimating the conditional intensity of the marked Hawkes process. We introduce two distinct models: \textit{“Shallow Neural Hawkes with marks”}- for Hawkes processes with excitatory kernels and \textit{“Neural Network for Non-Linear Hawkes with Marks”}- for non-linear Hawkes processes. Both these approaches take the past arrival times and their corresponding marks as the input to obtain the arrival intensity. This approach is entirely non-parametric, preserving the interpretability associated with the marked Hawkes process. To validate the efficacy of our method, we subject the method to synthetic datasets with known ground truth. Additionally, we apply our method to model cryptocurrency order book data, demonstrating its applicability to real-world scenarios. ...

February 7, 2024 · 2 min · Research Team

The puzzle of Carbon Allowance spread

The puzzle of Carbon Allowance spread ArXiv ID: 2405.12982 “View on arXiv” Authors: Unknown Abstract A growing number of contributions in the literature have identified a puzzle in the European carbon allowance (EUA) market. Specifically, a persistent cost-of-carry spread (C-spread) over the risk-free rate has been observed. We are the first to explain the anomalous C-spread with the credit spread of the corporates involved in the emission trading scheme. We obtain statistical evidence that the C-spread is cointegrated with both this credit spread and the risk-free interest rate. This finding has a relevant policy implication: the most effective solution to solve the market anomaly is including the EUA in the list of European Central Bank eligible collateral for refinancing operations. This change in the ECB monetary policy operations would greatly benefit the carbon market and the EU green transition. ...

February 7, 2024 · 2 min · Research Team

DeepTraderX: Challenging Conventional Trading Strategies with Deep Learning in Multi-Threaded Market Simulations

DeepTraderX: Challenging Conventional Trading Strategies with Deep Learning in Multi-Threaded Market Simulations ArXiv ID: 2403.18831 “View on arXiv” Authors: Unknown Abstract In this paper, we introduce DeepTraderX (DTX), a simple Deep Learning-based trader, and present results that demonstrate its performance in a multi-threaded market simulation. In a total of about 500 simulated market days, DTX has learned solely by watching the prices that other strategies produce. By doing this, it has successfully created a mapping from market data to quotes, either bid or ask orders, to place for an asset. Trained on historical Level-2 market data, i.e., the Limit Order Book (LOB) for specific tradable assets, DTX processes the market state $S$ at each timestep $T$ to determine a price $P$ for market orders. The market data used in both training and testing was generated from unique market schedules based on real historic stock market data. DTX was tested extensively against the best strategies in the literature, with its results validated by statistical analysis. Our findings underscore DTX’s capability to rival, and in many instances, surpass, the performance of public-domain traders, including those that outclass human traders, emphasising the efficiency of simple models, as this is required to succeed in intricate multi-threaded simulations. This highlights the potential of leveraging “black-box” Deep Learning systems to create more efficient financial markets. ...

February 6, 2024 · 2 min · Research Team