false

Narratives from GPT-derived Networks of News, and a link to Financial Markets Dislocations

Narratives from GPT-derived Networks of News, and a link to Financial Markets Dislocations ArXiv ID: 2311.14419 “View on arXiv” Authors: Unknown Abstract Starting from a corpus of economic articles from The Wall Street Journal, we present a novel systematic way to analyse news content that evolves over time. We leverage on state-of-the-art natural language processing techniques (i.e. GPT3.5) to extract the most important entities of each article available, and aggregate co-occurrence of entities in a related graph at the weekly level. Network analysis techniques and fuzzy community detection are tested on the proposed set of graphs, and a framework is introduced that allows systematic but interpretable detection of topics and narratives. In parallel, we propose to consider the sentiment around main entities of an article as a more accurate proxy for the overall sentiment of such piece of text, and describe a case-study to motivate this choice. Finally, we design features that characterise the type and structure of news within each week, and map them to moments of financial markets dislocations. The latter are identified as dates with unusually high volatility across asset classes, and we find quantitative evidence that they relate to instances of high entropy in the high-dimensional space of interconnected news. This result further motivates the pursued efforts to provide a novel framework for the systematic analysis of narratives within news. ...

November 24, 2023 · 2 min · Research Team

On optimal tracking portfolio in incomplete markets: The reinforcement learning approach

On optimal tracking portfolio in incomplete markets: The reinforcement learning approach ArXiv ID: 2311.14318 “View on arXiv” Authors: Unknown Abstract This paper studies an infinite horizon optimal tracking portfolio problem using capital injection in incomplete market models. The benchmark process is modelled by a geometric Brownian motion with zero drift driven by some unhedgeable risk. The relaxed tracking formulation is adopted where the fund account compensated by the injected capital needs to outperform the benchmark process at any time, and the goal is to minimize the cost of the discounted total capital injection. When model parameters are known, we formulate the equivalent auxiliary control problem with reflected state dynamics, for which the classical solution of the HJB equation with Neumann boundary condition is obtained explicitly. When model parameters are unknown, we introduce the exploratory formulation for the auxiliary control problem with entropy regularization and develop the continuous-time q-learning algorithm in models of reflected diffusion processes. In some illustrative numerical example, we show the satisfactory performance of the q-learning algorithm. ...

November 24, 2023 · 2 min · Research Team

Deep Learning and NLP in Cryptocurrency Forecasting: Integrating Financial, Blockchain, and Social Media Data

Deep Learning and NLP in Cryptocurrency Forecasting: Integrating Financial, Blockchain, and Social Media Data ArXiv ID: 2311.14759 “View on arXiv” Authors: Unknown Abstract We introduce novel approaches to cryptocurrency price forecasting, leveraging Machine Learning (ML) and Natural Language Processing (NLP) techniques, with a focus on Bitcoin and Ethereum. By analysing news and social media content, primarily from Twitter and Reddit, we assess the impact of public sentiment on cryptocurrency markets. A distinctive feature of our methodology is the application of the BART MNLI zero-shot classification model to detect bullish and bearish trends, significantly advancing beyond traditional sentiment analysis. Additionally, we systematically compare a range of pre-trained and fine-tuned deep learning NLP models against conventional dictionary-based sentiment analysis methods. Another key contribution of our work is the adoption of local extrema alongside daily price movements as predictive targets, reducing trading frequency and portfolio volatility. Our findings demonstrate that integrating textual data into cryptocurrency price forecasting not only improves forecasting accuracy but also consistently enhances the profitability and Sharpe ratio across various validation scenarios, particularly when applying deep learning NLP techniques. The entire codebase of our experiments is made available via an online repository: https://anonymous.4open.science/r/crypto-forecasting-public ...

November 23, 2023 · 2 min · Research Team

FinMem: A Performance-Enhanced LLM Trading Agent with Layered Memory and Character Design

FinMem: A Performance-Enhanced LLM Trading Agent with Layered Memory and Character Design ArXiv ID: 2311.13743 “View on arXiv” Authors: Unknown Abstract Recent advancements in Large Language Models (LLMs) have exhibited notable efficacy in question-answering (QA) tasks across diverse domains. Their prowess in integrating extensive web knowledge has fueled interest in developing LLM-based autonomous agents. While LLMs are efficient in decoding human instructions and deriving solutions by holistically processing historical inputs, transitioning to purpose-driven agents requires a supplementary rational architecture to process multi-source information, establish reasoning chains, and prioritize critical tasks. Addressing this, we introduce \textsc{“FinMem”}, a novel LLM-based agent framework devised for financial decision-making. It encompasses three core modules: Profiling, to customize the agent’s characteristics; Memory, with layered message processing, to aid the agent in assimilating hierarchical financial data; and Decision-making, to convert insights gained from memories into investment decisions. Notably, \textsc{“FinMem”}’s memory module aligns closely with the cognitive structure of human traders, offering robust interpretability and real-time tuning. Its adjustable cognitive span allows for the retention of critical information beyond human perceptual limits, thereby enhancing trading outcomes. This framework enables the agent to self-evolve its professional knowledge, react agilely to new investment cues, and continuously refine trading decisions in the volatile financial environment. We first compare \textsc{“FinMem”} with various algorithmic agents on a scalable real-world financial dataset, underscoring its leading trading performance in stocks. We then fine-tuned the agent’s perceptual span and character setting to achieve a significantly enhanced trading performance. Collectively, \textsc{“FinMem”} presents a cutting-edge LLM agent framework for automated trading, boosting cumulative investment returns. ...

November 23, 2023 · 2 min · Research Team

Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks

Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks ArXiv ID: 2401.06139 “View on arXiv” Authors: Unknown Abstract As the Chinese stock market continues to evolve and its market structure grows increasingly complex, traditional quantitative trading methods are facing escalating challenges. Particularly, due to policy uncertainty and the frequent market fluctuations triggered by sudden economic events, existing models often struggle to accurately predict market dynamics. To address these challenges, this paper introduces Stockformer, a price-volume factor stock selection model that integrates wavelet transformation and a multitask self-attention network, aimed at enhancing responsiveness and predictive accuracy regarding market instabilities. Through discrete wavelet transform, Stockformer decomposes stock returns into high and low frequencies, meticulously capturing long-term market trends and short-term fluctuations, including abrupt events. Moreover, the model incorporates a Dual-Frequency Spatiotemporal Encoder and graph embedding techniques to effectively capture complex temporal and spatial relationships among stocks. Employing a multitask learning strategy, it simultaneously predicts stock returns and directional trends. Experimental results show that Stockformer outperforms existing advanced methods on multiple real stock market datasets. In strategy backtesting, Stockformer consistently demonstrates exceptional stability and reliability across market conditions-whether rising, falling, or fluctuating-particularly maintaining high performance during downturns or volatile periods, indicating a high adaptability to market fluctuations. To foster innovation and collaboration in the financial analysis sector, the Stockformer model’s code has been open-sourced and is available on the GitHub repository: https://github.com/Eric991005/Multitask-Stockformer. ...

November 23, 2023 · 2 min · Research Team

Curriculum Learning and Imitation Learning for Model-free Control on Financial Time-series

Curriculum Learning and Imitation Learning for Model-free Control on Financial Time-series ArXiv ID: 2311.13326 “View on arXiv” Authors: Unknown Abstract Curriculum learning and imitation learning have been leveraged extensively in the robotics domain. However, minimal research has been done on leveraging these ideas on control tasks over highly stochastic time-series data. Here, we theoretically and empirically explore these approaches in a representative control task over complex time-series data. We implement the fundamental ideas of curriculum learning via data augmentation, while imitation learning is implemented via policy distillation from an oracle. Our findings reveal that curriculum learning should be considered a novel direction in improving control-task performance over complex time-series. Our ample random-seed out-sample empirics and ablation studies are highly encouraging for curriculum learning for time-series control. These findings are especially encouraging as we tune all overlapping hyperparameters on the baseline – giving an advantage to the baseline. On the other hand, we find that imitation learning should be used with caution. ...

November 22, 2023 · 2 min · Research Team

High order universal portfolios

High order universal portfolios ArXiv ID: 2311.13564 “View on arXiv” Authors: Unknown Abstract The Cover universal portfolio (UP from now on) has many interesting theoretical and numerical properties and was investigated for a long time. Building on it, we explore what happens when we add this UP to the market as a new synthetic asset and construct by recurrence higher order UPs. We investigate some important theoretical properties of the high order UPs and show in particular that they are indeed different from the Cover UP and are capable to break the time permutation invariance. We show that under some perturbation regime the second high order UP has better Sharp ratio than the standard UP and briefly investigate arbitrage opportunities thus created. Numerical experiences on a benchmark from the literature confirm that high order UPs improve Cover’s UP performances. ...

November 22, 2023 · 2 min · Research Team

Optimal Linear Signal: An Unsupervised Machine Learning Framework to Optimize PnL with Linear Signals

Optimal Linear Signal: An Unsupervised Machine Learning Framework to Optimize PnL with Linear Signals ArXiv ID: 2401.05337 “View on arXiv” Authors: Unknown Abstract This study presents an unsupervised machine learning approach for optimizing Profit and Loss (PnL) in quantitative finance. Our algorithm, akin to an unsupervised variant of linear regression, maximizes the Sharpe Ratio of PnL generated from signals constructed linearly from exogenous variables. The methodology employs a linear relationship between exogenous variables and the trading signal, with the objective of maximizing the Sharpe Ratio through parameter optimization. Empirical application on an ETF representing U.S. Treasury bonds demonstrates the model’s effectiveness, supported by regularization techniques to mitigate overfitting. The study concludes with potential avenues for further development, including generalized time steps and enhanced corrective terms. ...

November 22, 2023 · 2 min · Research Team

The Impact Of Interest Rates On Firms Financial Decisions

The Impact Of Interest Rates On Firms Financial Decisions ArXiv ID: 2311.14738 “View on arXiv” Authors: Unknown Abstract Financial decisions are the decisions that managers take with regard to the finances of a company. This article aims to examine and explain the effect of interest rates on economic and financial decisions such as investment, funding, and dividend in a firm. This research uses the correlation coefficient analysis methods and descriptive methods to illustrate the relationship between interest rates and financial decisions. The data used in this research was obtained from several government reports and leading economic sources. The results of this research show that interest rates have a negatively insignificant effect on investment and funding decisions, but positively moderate effect on dividend decisions. ...

November 22, 2023 · 2 min · Research Team

A General Framework for Importance Sampling with Markov Random Walks

A General Framework for Importance Sampling with Markov Random Walks ArXiv ID: 2311.12330 “View on arXiv” Authors: Unknown Abstract Although stochastic models driven by latent Markov processes are widely used, the classical importance sampling methods based on the exponential tilting for these models suffers from the difficulties in computing the eigenvalues and associated eigenfunctions and the plausibility of the indirect asymptotic large deviation regime for the variance of the estimator. We propose a general importance sampling framework that twists the observable and latent processes separately using a link function that directly minimizes the estimator’s variance. An optimal choice of the link function is chosen within the locally asymptotically normal family. We show the logarithmic efficiency of the proposed estimator. As applications, we estimate an overflow probability under a pandemic model and the CoVaR, a measurement of the co-dependent financial systemic risk. Both applications are beyond the scope of traditional importance sampling methods due to their nonlinear features. ...

November 21, 2023 · 2 min · Research Team