false

DeRisk: An Effective Deep Learning Framework for Credit Risk Prediction over Real-World Financial Data

DeRisk: An Effective Deep Learning Framework for Credit Risk Prediction over Real-World Financial Data ArXiv ID: 2308.03704 “View on arXiv” Authors: Unknown Abstract Despite the tremendous advances achieved over the past years by deep learning techniques, the latest risk prediction models for industrial applications still rely on highly handtuned stage-wised statistical learning tools, such as gradient boosting and random forest methods. Different from images or languages, real-world financial data are high-dimensional, sparse, noisy and extremely imbalanced, which makes deep neural network models particularly challenging to train and fragile in practice. In this work, we propose DeRisk, an effective deep learning risk prediction framework for credit risk prediction on real-world financial data. DeRisk is the first deep risk prediction model that outperforms statistical learning approaches deployed in our company’s production system. We also perform extensive ablation studies on our method to present the most critical factors for the empirical success of DeRisk. ...

August 7, 2023 · 2 min · Research Team

Reinforcement Learning for Financial Index Tracking

Reinforcement Learning for Financial Index Tracking ArXiv ID: 2308.02820 “View on arXiv” Authors: Unknown Abstract We propose the first discrete-time infinite-horizon dynamic formulation of the financial index tracking problem under both return-based tracking error and value-based tracking error. The formulation overcomes the limitations of existing models by incorporating the intertemporal dynamics of market information variables not limited to prices, allowing exact calculation of transaction costs, accounting for the tradeoff between overall tracking error and transaction costs, allowing effective use of data in a long time period, etc. The formulation also allows novel decision variables of cash injection or withdraw. We propose to solve the portfolio rebalancing equation using a Banach fixed point iteration, which allows to accurately calculate the transaction costs specified as nonlinear functions of trading volumes in practice. We propose an extension of deep reinforcement learning (RL) method to solve the dynamic formulation. Our RL method resolves the issue of data limitation resulting from the availability of a single sample path of financial data by a novel training scheme. A comprehensive empirical study based on a 17-year-long testing set demonstrates that the proposed method outperforms a benchmark method in terms of tracking accuracy and has the potential for earning extra profit through cash withdraw strategy. ...

August 5, 2023 · 2 min · Research Team

Recurrent Neural Networks with more flexible memory: better predictions than rough volatility

Recurrent Neural Networks with more flexible memory: better predictions than rough volatility ArXiv ID: 2308.08550 “View on arXiv” Authors: Unknown Abstract We extend recurrent neural networks to include several flexible timescales for each dimension of their output, which mechanically improves their abilities to account for processes with long memory or with highly disparate time scales. We compare the ability of vanilla and extended long short term memory networks (LSTMs) to predict asset price volatility, known to have a long memory. Generally, the number of epochs needed to train extended LSTMs is divided by two, while the variation of validation and test losses among models with the same hyperparameters is much smaller. We also show that the model with the smallest validation loss systemically outperforms rough volatility predictions by about 20% when trained and tested on a dataset with multiple time series. ...

August 4, 2023 · 2 min · Research Team

A novel approach for quantum financial simulation and quantum state preparation

A novel approach for quantum financial simulation and quantum state preparation ArXiv ID: 2308.01844 “View on arXiv” Authors: Unknown Abstract Quantum state preparation is vital in quantum computing and information processing. The ability to accurately and reliably prepare specific quantum states is essential for various applications. One of the promising applications of quantum computers is quantum simulation. This requires preparing a quantum state representing the system we are trying to simulate. This research introduces a novel simulation algorithm, the multi-Split-Steps Quantum Walk (multi-SSQW), designed to learn and load complicated probability distributions using parameterized quantum circuits (PQC) with a variational solver on classical simulators. The multi-SSQW algorithm is a modified version of the split-steps quantum walk, enhanced to incorporate a multi-agent decision-making process, rendering it suitable for modeling financial markets. The study provides theoretical descriptions and empirical investigations of the multi-SSQW algorithm to demonstrate its promising capabilities in probability distribution simulation and financial market modeling. Harnessing the advantages of quantum computation, the multi-SSQW models complex financial distributions and scenarios with high accuracy, providing valuable insights and mechanisms for financial analysis and decision-making. The multi-SSQW’s key benefits include its modeling flexibility, stable convergence, and instantaneous computation. These advantages underscore its rapid modeling and prediction potential in dynamic financial markets. ...

August 3, 2023 · 2 min · Research Team

Path Shadowing Monte-Carlo

Path Shadowing Monte-Carlo ArXiv ID: 2308.01486 “View on arXiv” Authors: Unknown Abstract We introduce a Path Shadowing Monte-Carlo method, which provides prediction of future paths, given any generative model. At any given date, it averages future quantities over generated price paths whose past history matches, or shadows', the actual (observed) history. We test our approach using paths generated from a maximum entropy model of financial prices, based on a recently proposed multi-scale analogue of the standard skewness and kurtosis called Scattering Spectra’. This model promotes diversity of generated paths while reproducing the main statistical properties of financial prices, including stylized facts on volatility roughness. Our method yields state-of-the-art predictions for future realized volatility and allows one to determine conditional option smiles for the S&P500 that outperform both the current version of the Path-Dependent Volatility model and the option market itself. ...

August 3, 2023 · 2 min · Research Team

Portfolio Optimization in a Market with Hidden Gaussian Drift and Randomly Arriving Expert Opinions: Modeling and Theoretical Results

Portfolio Optimization in a Market with Hidden Gaussian Drift and Randomly Arriving Expert Opinions: Modeling and Theoretical Results ArXiv ID: 2308.02049 “View on arXiv” Authors: Unknown Abstract This paper investigates the optimal selection of portfolios for power utility maximizing investors in a financial market where stock returns depend on a hidden Gaussian mean reverting drift process. Information on the drift is obtained from returns and expert opinions in the form of noisy signals about the current state of the drift arriving randomly over time. The arrival dates are modeled as the jump times of a homogeneous Poisson process. Applying Kalman filter techniques we derive estimates of the hidden drift which are described by the conditional mean and covariance of the drift given the observations. The utility maximization problem is solved with dynamic programming methods. We derive the associated dynamic programming equation and study regularization arguments for a rigorous mathematical justification. ...

August 3, 2023 · 2 min · Research Team

A quantum double-or-nothing game: The Kelly Criterion for Spins

A quantum double-or-nothing game: The Kelly Criterion for Spins ArXiv ID: 2308.01305 “View on arXiv” Authors: Unknown Abstract A sequence of spin-1/2 particles polarised in one of two possible directions is presented to an experimenter, who can wager in a double-or-nothing game on the outcomes of measurements in freely chosen polarisation directions. Wealth is accrued through astute betting. As information is gained from the stream of particles, the measurement directions are progressively adjusted, and the portfolio growth rate is raised. The optimal quantum strategy is determined numerically and shown to differ from the classical strategy, which is associated with the Kelly criterion. The paper contributes to the development of quantum finance, as aspects of portfolio optimisation are extended to the quantum realm. ...

August 2, 2023 · 2 min · Research Team

An optimal transport approach for the multiple quantile hedging problem

An optimal transport approach for the multiple quantile hedging problem ArXiv ID: 2308.01121 “View on arXiv” Authors: Unknown Abstract We consider the multiple quantile hedging problem, which is a class of partial hedging problems containing as special examples the quantile hedging problem (F{“ö”}llmer & Leukert 1999) and the PnL matching problem (introduced in Bouchard & Vu 2012). In complete non-linear markets, we show that the problem can be reformulated as a kind of Monge optimal transport problem. Using this observation, we introduce a Kantorovitch version of the problem and prove that the value of both problems coincide. In the linear case, we thus obtain that the multiple quantile hedging problem can be seen as a semi-discrete optimal transport problem, for which we further introduce the dual problem. We then prove that there is no duality gap, allowing us to design a numerical method based on SGA algorithms to compute the multiple quantile hedging price. ...

August 2, 2023 · 2 min · Research Team

Bayesian framework for characterizing cryptocurrency market dynamics, structural dependency, and volatility using potential field

Bayesian framework for characterizing cryptocurrency market dynamics, structural dependency, and volatility using potential field ArXiv ID: 2308.01013 “View on arXiv” Authors: Unknown Abstract Identifying the structural dependence between the cryptocurrencies and predicting market trend are fundamental for effective portfolio management in cryptocurrency trading. In this paper, we present a unified Bayesian framework based on potential field theory and Gaussian Process to characterize the structural dependency of various cryptocurrencies, using historic price information. The following are our significant contributions: (i) Proposed a novel model for cryptocurrency price movements as a trajectory of a dynamical system governed by a time-varying non-linear potential field. (ii) Validated the existence of the non-linear potential function in cryptocurrency market through Lyapunov stability analysis. (iii) Developed a Bayesian framework for inferring the non-linear potential function from observed cryptocurrency prices. (iv) Proposed that attractors and repellers inferred from the potential field are reliable cryptocurrency market indicators, surpassing existing attributes, such as, mean, open price or close price of an observation window, in the literature. (v) Analysis of cryptocurrency market during various Bitcoin crash durations from April 2017 to November 2021, shows that attractors captured the market trend, volatility, and correlation. In addition, attractors aids explainability and visualization. (vi) The structural dependence inferred by the proposed approach was found to be consistent with results obtained using the popular wavelet coherence approach. (vii) The proposed market indicators (attractors and repellers) can be used to improve the prediction performance of state-of-art deep learning price prediction models. As, an example, we show improvement in Litecoin price prediction up to a horizon of 12 days. ...

August 2, 2023 · 3 min · Research Team

Effects of Daily News Sentiment on Stock Price Forecasting

Effects of Daily News Sentiment on Stock Price Forecasting ArXiv ID: 2308.08549 “View on arXiv” Authors: Unknown Abstract Predicting future prices of a stock is an arduous task to perform. However, incorporating additional elements can significantly improve our predictions, rather than relying solely on a stock’s historical price data to forecast its future price. Studies have demonstrated that investor sentiment, which is impacted by daily news about the company, can have a significant impact on stock price swings. There are numerous sources from which we can get this information, but they are cluttered with a lot of noise, making it difficult to accurately extract the sentiments from them. Hence the focus of our research is to design an efficient system to capture the sentiments from the news about the NITY50 stocks and investigate how much the financial news sentiment of these stocks are affecting their prices over a period of time. This paper presents a robust data collection and preprocessing framework to create a news database for a timeline of around 3.7 years, consisting of almost half a million news articles. We also capture the stock price information for this timeline and create multiple time series data, that include the sentiment scores from various sections of the article, calculated using different sentiment libraries. Based on this, we fit several LSTM models to forecast the stock prices, with and without using the sentiment scores as features and compare their performances. ...

August 2, 2023 · 2 min · Research Team