false

Adversarial Deep Hedging: Learning to Hedge without Price Process Modeling

Adversarial Deep Hedging: Learning to Hedge without Price Process Modeling ArXiv ID: 2307.13217 “View on arXiv” Authors: Unknown Abstract Deep hedging is a deep-learning-based framework for derivative hedging in incomplete markets. The advantage of deep hedging lies in its ability to handle various realistic market conditions, such as market frictions, which are challenging to address within the traditional mathematical finance framework. Since deep hedging relies on market simulation, the underlying asset price process model is crucial. However, existing literature on deep hedging often relies on traditional mathematical finance models, e.g., Brownian motion and stochastic volatility models, and discovering effective underlying asset models for deep hedging learning has been a challenge. In this study, we propose a new framework called adversarial deep hedging, inspired by adversarial learning. In this framework, a hedger and a generator, which respectively model the underlying asset process and the underlying asset process, are trained in an adversarial manner. The proposed method enables to learn a robust hedger without explicitly modeling the underlying asset process. Through numerical experiments, we demonstrate that our proposed method achieves competitive performance to models that assume explicit underlying asset processes across various real market data. ...

July 25, 2023 · 2 min · Research Team

Deep Reinforcement Learning for Robust Goal-Based Wealth Management

Deep Reinforcement Learning for Robust Goal-Based Wealth Management ArXiv ID: 2307.13501 “View on arXiv” Authors: Unknown Abstract Goal-based investing is an approach to wealth management that prioritizes achieving specific financial goals. It is naturally formulated as a sequential decision-making problem as it requires choosing the appropriate investment until a goal is achieved. Consequently, reinforcement learning, a machine learning technique appropriate for sequential decision-making, offers a promising path for optimizing these investment strategies. In this paper, a novel approach for robust goal-based wealth management based on deep reinforcement learning is proposed. The experimental results indicate its superiority over several goal-based wealth management benchmarks on both simulated and historical market data. ...

July 25, 2023 · 2 min · Research Team

Efficient Multi-Change Point Analysis to decode Economic Crisis Information from the S&P500 Mean Market Correlation

Efficient Multi-Change Point Analysis to decode Economic Crisis Information from the S&P500 Mean Market Correlation ArXiv ID: 2308.00087 “View on arXiv” Authors: Unknown Abstract Identifying macroeconomic events that are responsible for dramatic changes of economy is of particular relevance to understand the overall economic dynamics. We introduce an open-source available efficient Python implementation of a Bayesian multi-trend change point analysis which solves significant memory and computing time limitations to extract crisis information from a correlation metric. Therefore, we focus on the recently investigated S&P500 mean market correlation in a period of roughly 20 years that includes the dot-com bubble, the global financial crisis and the Euro crisis. The analysis is performed two-fold: first, in retrospect on the whole dataset and second, in an on-line adaptive manner in pre-crisis segments. The on-line sensitivity horizon is roughly determined to be 80 up to 100 trading days after a crisis onset. A detailed comparison to global economic events supports the interpretation of the mean market correlation as an informative macroeconomic measure by a rather good agreement of change point distributions and major crisis events. Furthermore, the results hint to the importance of the U.S. housing bubble as trigger of the global financial crisis, provide new evidence for the general reasoning of locally (meta)stable economic states and could work as a comparative impact rating of specific economic events. ...

July 25, 2023 · 2 min · Research Team

Fragmentation and optimal liquidity supply on decentralized exchanges

Fragmentation and optimal liquidity supply on decentralized exchanges ArXiv ID: 2307.13772 “View on arXiv” Authors: Unknown Abstract We investigate how liquidity providers (LPs) choose between high- and low-fee trading venues, in the face of a fixed common gas cost. Analyzing Uniswap data, we find that high-fee pools attract 58% of liquidity supply yet execute only 21% of volume. Large LPs dominate low-fee pools, frequently adjusting out-of-range positions in response to informed order flow. In contrast, small LPs converge to high-fee pools, accepting lower execution probabilities to mitigate adverse selection and liquidity management costs. Fragmented liquidity dominates a single-fee market, as it encourages more liquidity providers to enter the market, while fostering LP competition on the low-fee pool. ...

July 25, 2023 · 2 min · Research Team

Multi-Factor Inception: What to Do with All of These Features?

Multi-Factor Inception: What to Do with All of These Features? ArXiv ID: 2307.13832 “View on arXiv” Authors: Unknown Abstract Cryptocurrency trading represents a nascent field of research, with growing adoption in industry. Aided by its decentralised nature, many metrics describing cryptocurrencies are accessible with a simple Google search and update frequently, usually at least on a daily basis. This presents a promising opportunity for data-driven systematic trading research, where limited historical data can be augmented with additional features, such as hashrate or Google Trends. However, one question naturally arises: how to effectively select and process these features? In this paper, we introduce Multi-Factor Inception Networks (MFIN), an end-to-end framework for systematic trading with multiple assets and factors. MFINs extend Deep Inception Networks (DIN) to operate in a multi-factor context. Similar to DINs, MFIN models automatically learn features from returns data and output position sizes that optimise portfolio Sharpe ratio. Compared to a range of rule-based momentum and reversion strategies, MFINs learn an uncorrelated, higher-Sharpe strategy that is not captured by traditional, hand-crafted factors. In particular, MFIN models continue to achieve consistent returns over the most recent years (2022-2023), where traditional strategies and the wider cryptocurrency market have underperformed. ...

July 25, 2023 · 2 min · Research Team

Transfer Learning for Portfolio Optimization

Transfer Learning for Portfolio Optimization ArXiv ID: 2307.13546 “View on arXiv” Authors: Unknown Abstract In this work, we explore the possibility of utilizing transfer learning techniques to address the financial portfolio optimization problem. We introduce a novel concept called “transfer risk”, within the optimization framework of transfer learning. A series of numerical experiments are conducted from three categories: cross-continent transfer, cross-sector transfer, and cross-frequency transfer. In particular, 1. a strong correlation between the transfer risk and the overall performance of transfer learning methods is established, underscoring the significance of transfer risk as a viable indicator of “transferability”; 2. transfer risk is shown to provide a computationally efficient way to identify appropriate source tasks in transfer learning, enhancing the efficiency and effectiveness of the transfer learning approach; 3. additionally, the numerical experiments offer valuable new insights for portfolio management across these different settings. ...

July 25, 2023 · 2 min · Research Team

VolTS: A Volatility-based Trading System to forecast Stock Markets Trend using Statistics and Machine Learning

VolTS: A Volatility-based Trading System to forecast Stock Markets Trend using Statistics and Machine Learning ArXiv ID: 2307.13422 “View on arXiv” Authors: Unknown Abstract Volatility-based trading strategies have attracted a lot of attention in financial markets due to their ability to capture opportunities for profit from market dynamics. In this article, we propose a new volatility-based trading strategy that combines statistical analysis with machine learning techniques to forecast stock markets trend. The method consists of several steps including, data exploration, correlation and autocorrelation analysis, technical indicator use, application of hypothesis tests and statistical models, and use of variable selection algorithms. In particular, we use the k-means++ clustering algorithm to group the mean volatility of the nine largest stocks in the NYSE and NasdaqGS markets. The resulting clusters are the basis for identifying relationships between stocks based on their volatility behaviour. Next, we use the Granger Causality Test on the clustered dataset with mid-volatility to determine the predictive power of a stock over another stock. By identifying stocks with strong predictive relationships, we establish a trading strategy in which the stock acting as a reliable predictor becomes a trend indicator to determine the buy, sell, and hold of target stock trades. Through extensive backtesting and performance evaluation, we find the reliability and robustness of our volatility-based trading strategy. The results suggest that our approach effectively captures profitable trading opportunities by leveraging the predictive power of volatility clusters, and Granger causality relationships between stocks. The proposed strategy offers valuable insights and practical implications to investors and market participants who seek to improve their trading decisions and capitalize on market trends. It provides valuable insights and practical implications for market participants looking to. ...

July 25, 2023 · 3 min · Research Team

Financial Machine Learning

Financial Machine Learning ArXiv ID: ssrn-4519264 “View on arXiv” Authors: Unknown Abstract Click link for full abstract. Keywords: Unknown Complexity vs Empirical Score Math Complexity: 8.5/10 Empirical Rigor: 4.0/10 Quadrant: Lab Rats Why: The paper is a comprehensive survey heavy on advanced mathematical derivations, theoretical frameworks, and econometric methodology (e.g., Euler equations, conditional factor models, MLE). While it discusses empirical design and data challenges extensively, it focuses on guiding principles and theoretical best practices rather than providing executable code, specific backtests, or dataset implementations. flowchart TD A["Research Goal: Explore challenges & solutions in financial ML"] --> B["Data: Financial time-series data"] B --> C{"Key Methodology"} C --> D["Computational Process: Handling non-iid data"] C --> E["Computational Process: Avoiding overfitting"] D --> F["Key Findings: Specialized techniques required"] E --> F F --> G["Outcome: Robust predictive models"] style A fill:#e1f5fe style G fill:#e8f5e8

July 24, 2023 · 1 min · Research Team

From characteristic functions to multivariate distribution functions and European option prices by the damped COS method

From characteristic functions to multivariate distribution functions and European option prices by the damped COS method ArXiv ID: 2307.12843 “View on arXiv” Authors: Unknown Abstract We provide a unified framework to obtain numerically certain quantities, such as the distribution function, absolute moments and prices of financial options, from the characteristic function of some (unknown) probability density function using the Fourier-cosine expansion (COS) method. The classical COS method is numerically very efficient in one-dimension, but it cannot deal very well with certain integrands in general dimensions. Therefore, we introduce the damped COS method, which can handle a large class of integrands very efficiently. We prove the convergence of the (damped) COS method and study its order of convergence. The method converges exponentially if the characteristic function decays exponentially. To apply the (damped) COS method, one has to specify two parameters: a truncation range for the multivariate density and the number of terms to approximate the truncated density by a cosine series. We provide an explicit formula for the truncation range and an implicit formula for the number of terms. Numerical experiments up to five dimensions confirm the theoretical results. ...

July 24, 2023 · 2 min · Research Team

Memory Effects, Multiple Time Scales and Local Stability in Langevin Models of the S&P500 Market Correlation

Memory Effects, Multiple Time Scales and Local Stability in Langevin Models of the S&P500 Market Correlation ArXiv ID: 2307.12744 “View on arXiv” Authors: Unknown Abstract The analysis of market correlations is crucial for optimal portfolio selection of correlated assets, but their memory effects have often been neglected. In this work, we analyse the mean market correlation of the S&P500 which corresponds to the main market mode in principle component analysis. We fit a generalised Langevin equation (GLE) to the data whose memory kernel implies that there is a significant memory effect in the market correlation ranging back at least three trading weeks. The memory kernel improves the forecasting accuracy of the GLE compared to models without memory and hence, such a memory effect has to be taken into account for optimal portfolio selection to minimise risk or for predicting future correlations. Moreover, a Bayesian resilience estimation provides further evidence for non-Markovianity in the data and suggests the existence of a hidden slow time scale that operates on much slower times than the observed daily market data. Assuming that such a slow time scale exists, our work supports previous research on the existence of locally stable market states. ...

July 24, 2023 · 2 min · Research Team