false

Mapping Global Value Chains at the Product Level

Mapping Global Value Chains at the Product Level ArXiv ID: 2308.02491 “View on arXiv” Authors: Unknown Abstract Value chain data is crucial to navigate economic disruptions, such as those caused by the COVID-19 pandemic and the war in Ukraine. Yet, despite its importance, publicly available value chain datasets, such as the World Input-Output Database'', Inter-Country Input-Output Tables’’, EXIOBASE'' or the EORA’’, lack detailed information about products (e.g. Radio Receivers, Telephones, Electrical Capacitors, LCDs, etc.) and rely instead on more aggregate industrial sectors (e.g. Electrical Equipment, Telecommunications). Here, we introduce a method based on machine learning and trade theory to infer product-level value chain relationships from fine-grained international trade data. We apply our method to data summarizing the exports and imports of 300+ world regions (e.g. states in the U.S., prefectures in Japan, etc.) and 1200+ products to infer value chain information implicit in their trade patterns. Furthermore, we use proportional allocation to assign the trade flow between regions and countries. This work provides an approximate method to map value chain data at the product level with a relevant trade flow, that should be of interest to people working in logistics, trade, and sustainable development. ...

June 12, 2023 · 2 min · Research Team

Optimizing Investment Strategies with Lazy Factor and Probability Weighting: A Price Portfolio Forecasting and Mean-Variance Model with Transaction Costs Approach

Optimizing Investment Strategies with Lazy Factor and Probability Weighting: A Price Portfolio Forecasting and Mean-Variance Model with Transaction Costs Approach ArXiv ID: 2306.07928 “View on arXiv” Authors: Unknown Abstract Market traders often engage in the frequent transaction of volatile assets to optimize their total return. In this study, we introduce a novel investment strategy model, anchored on the ’lazy factor.’ Our approach bifurcates into a Price Portfolio Forecasting Model and a Mean-Variance Model with Transaction Costs, utilizing probability weights as the coefficients of laziness factors. The Price Portfolio Forecasting Model, leveraging the EXPMA Mean Method, plots the long-term price trend line and forecasts future price movements, incorporating the tangent slope and rate of change. For short-term investments, we apply the ARIMA Model to predict ensuing prices. The Mean-Variance Model with Transaction Costs employs the Monte Carlo Method to formulate the feasible region. To strike an optimal balance between risk and return, equal probability weights are incorporated as coefficients of the laziness factor. To assess the efficacy of this combined strategy, we executed extensive experiments on a specified dataset. Our findings underscore the model’s adaptability and generalizability, indicating its potential to transform investment strategies. ...

June 12, 2023 · 2 min · Research Team

Causality between Sentiment and Cryptocurrency Prices

Causality between Sentiment and Cryptocurrency Prices ArXiv ID: 2306.05803 “View on arXiv” Authors: Unknown Abstract This study investigates the relationship between narratives conveyed through microblogging platforms, namely Twitter, and the value of crypto assets. Our study provides a unique technique to build narratives about cryptocurrency by combining topic modelling of short texts with sentiment analysis. First, we used an unsupervised machine learning algorithm to discover the latent topics within the massive and noisy textual data from Twitter, and then we revealed 4-5 cryptocurrency-related narratives, including financial investment, technological advancement related to crypto, financial and political regulations, crypto assets, and media coverage. In a number of situations, we noticed a strong link between our narratives and crypto prices. Our work connects the most recent innovation in economics, Narrative Economics, to a new area of study that combines topic modelling and sentiment analysis to relate consumer behaviour to narratives. ...

June 9, 2023 · 2 min · Research Team

FinGPT: Open-Source Financial Large Language Models

FinGPT: Open-Source Financial Large Language Models ArXiv ID: 2306.06031 “View on arXiv” Authors: Unknown Abstract Large language models (LLMs) have shown the potential of revolutionizing natural language processing tasks in diverse domains, sparking great interest in finance. Accessing high-quality financial data is the first challenge for financial LLMs (FinLLMs). While proprietary models like BloombergGPT have taken advantage of their unique data accumulation, such privileged access calls for an open-source alternative to democratize Internet-scale financial data. In this paper, we present an open-source large language model, FinGPT, for the finance sector. Unlike proprietary models, FinGPT takes a data-centric approach, providing researchers and practitioners with accessible and transparent resources to develop their FinLLMs. We highlight the importance of an automatic data curation pipeline and the lightweight low-rank adaptation technique in building FinGPT. Furthermore, we showcase several potential applications as stepping stones for users, such as robo-advising, algorithmic trading, and low-code development. Through collaborative efforts within the open-source AI4Finance community, FinGPT aims to stimulate innovation, democratize FinLLMs, and unlock new opportunities in open finance. Two associated code repos are https://github.com/AI4Finance-Foundation/FinGPT and https://github.com/AI4Finance-Foundation/FinNLP ...

June 9, 2023 · 2 min · Research Team

Learning Not to Spoof

Learning Not to Spoof ArXiv ID: 2306.06087 “View on arXiv” Authors: Unknown Abstract As intelligent trading agents based on reinforcement learning (RL) gain prevalence, it becomes more important to ensure that RL agents obey laws, regulations, and human behavioral expectations. There is substantial literature concerning the aversion of obvious catastrophes like crashing a helicopter or bankrupting a trading account, but little around the avoidance of subtle non-normative behavior for which there are examples, but no programmable definition. Such behavior may violate legal or regulatory, rather than physical or monetary, constraints. In this article, I consider a series of experiments in which an intelligent stock trading agent maximizes profit but may also inadvertently learn to spoof the market in which it participates. I first inject a hand-coded spoofing agent to a multi-agent market simulation and learn to recognize spoofing activity sequences. Then I replace the hand-coded spoofing trader with a simple profit-maximizing RL agent and observe that it independently discovers spoofing as the optimal strategy. Finally, I introduce a method to incorporate the recognizer as normative guide, shaping the agent’s perceived rewards and altering its selected actions. The agent remains profitable while avoiding spoofing behaviors that would result in even higher profit. After presenting the empirical results, I conclude with some recommendations. The method should generalize to the reduction of any unwanted behavior for which a recognizer can be learned. ...

June 9, 2023 · 2 min · Research Team

Liquidity takers behavior representation through a contrastive learning approach

Liquidity takers behavior representation through a contrastive learning approach ArXiv ID: 2306.05987 “View on arXiv” Authors: Unknown Abstract Thanks to the access to the labeled orders on the CAC40 data from Euronext, we are able to analyze agents’ behaviors in the market based on their placed orders. In this study, we construct a self-supervised learning model using triplet loss to effectively learn the representation of agent market orders. By acquiring this learned representation, various downstream tasks become feasible. In this work, we utilize the K-means clustering algorithm on the learned representation vectors of agent orders to identify distinct behavior types within each cluster. ...

June 9, 2023 · 1 min · Research Team

Monte Carlo simulation for Barndorff-Nielsen and Shephard model under change of measure

Monte Carlo simulation for Barndorff-Nielsen and Shephard model under change of measure ArXiv ID: 2306.05750 “View on arXiv” Authors: Unknown Abstract The Barndorff-Nielsen and Shephard model is a representative jump-type stochastic volatility model. Still, no method exists to compute option prices numerically for the non-martingale case with infinite active jumps. We develop two simulation methods for such a case under change of measure and conduct some numerical experiments. Keywords: Barndorff-Nielsen and Shephard Model, Stochastic Volatility, Jump Diffusion, Option Pricing, Monte Carlo Simulation, Options ...

June 9, 2023 · 2 min · Research Team

Random matrix theory and nested clustered portfolios on Mexican markets

Random matrix theory and nested clustered portfolios on Mexican markets ArXiv ID: 2306.05667 “View on arXiv” Authors: Unknown Abstract This work aims to deal with the optimal allocation instability problem of Markowitz’s modern portfolio theory in high dimensionality. We propose a combined strategy that considers covariance matrix estimators from Random Matrix Theory~(RMT) and the machine learning allocation methodology known as Nested Clustered Optimization~(NCO). The latter methodology is modified and reformulated in terms of the spectral clustering algorithm and Minimum Spanning Tree~(MST) to solve internal problems inherent to the original proposal. Markowitz’s classical mean-variance allocation and the modified NCO machine learning approach are tested on financial instruments listed on the Mexican Stock Exchange~(BMV) in a moving window analysis from 2018 to 2022. The modified NCO algorithm achieves stable allocations by incorporating RMT covariance estimators. In particular, the allocation weights are positive, and their absolute value adds up to the total capital without considering explicit restrictions in the formulation. Our results suggest that can be avoided the risky \emph{“short position”} investment strategy by means of RMT inference and statistical learning techniques. ...

June 9, 2023 · 2 min · Research Team

Constructing Time-Series Momentum Portfolios with Deep Multi-Task Learning

Constructing Time-Series Momentum Portfolios with Deep Multi-Task Learning ArXiv ID: 2306.13661 “View on arXiv” Authors: Unknown Abstract A diversified risk-adjusted time-series momentum (TSMOM) portfolio can deliver substantial abnormal returns and offer some degree of tail risk protection during extreme market events. The performance of existing TSMOM strategies, however, relies not only on the quality of the momentum signal but also on the efficacy of the volatility estimator. Yet many of the existing studies have always considered these two factors to be independent. Inspired by recent progress in Multi-Task Learning (MTL), we present a new approach using MTL in a deep neural network architecture that jointly learns portfolio construction and various auxiliary tasks related to volatility, such as forecasting realized volatility as measured by different volatility estimators. Through backtesting from January 2000 to December 2020 on a diversified portfolio of continuous futures contracts, we demonstrate that even after accounting for transaction costs of up to 3 basis points, our approach outperforms existing TSMOM strategies. Moreover, experiments confirm that adding auxiliary tasks indeed boosts the portfolio’s performance. These findings demonstrate that MTL can be a powerful tool in finance. ...

June 8, 2023 · 2 min · Research Team

Deep Attentive Survival Analysis in Limit Order Books: Estimating Fill Probabilities with Convolutional-Transformers

Deep Attentive Survival Analysis in Limit Order Books: Estimating Fill Probabilities with Convolutional-Transformers ArXiv ID: 2306.05479 “View on arXiv” Authors: Unknown Abstract One of the key decisions in execution strategies is the choice between a passive (liquidity providing) or an aggressive (liquidity taking) order to execute a trade in a limit order book (LOB). Essential to this choice is the fill probability of a passive limit order placed in the LOB. This paper proposes a deep learning method to estimate the filltimes of limit orders posted in different levels of the LOB. We develop a novel model for survival analysis that maps time-varying features of the LOB to the distribution of filltimes of limit orders. Our method is based on a convolutional-Transformer encoder and a monotonic neural network decoder. We use proper scoring rules to compare our method with other approaches in survival analysis, and perform an interpretability analysis to understand the informativeness of features used to compute fill probabilities. Our method significantly outperforms those typically used in survival analysis literature. Finally, we carry out a statistical analysis of the fill probability of orders placed in the order book (e.g., within the bid-ask spread) for assets with different queue dynamics and trading activity. ...

June 8, 2023 · 2 min · Research Team