false

Maximally Machine-Learnable Portfolios

Maximally Machine-Learnable Portfolios ArXiv ID: 2306.05568 “View on arXiv” Authors: Unknown Abstract When it comes to stock returns, any form of predictability can bolster risk-adjusted profitability. We develop a collaborative machine learning algorithm that optimizes portfolio weights so that the resulting synthetic security is maximally predictable. Precisely, we introduce MACE, a multivariate extension of Alternating Conditional Expectations that achieves the aforementioned goal by wielding a Random Forest on one side of the equation, and a constrained Ridge Regression on the other. There are two key improvements with respect to Lo and MacKinlay’s original maximally predictable portfolio approach. First, it accommodates for any (nonlinear) forecasting algorithm and predictor set. Second, it handles large portfolios. We conduct exercises at the daily and monthly frequency and report significant increases in predictability and profitability using very little conditioning information. Interestingly, predictability is found in bad as well as good times, and MACE successfully navigates the debacle of 2022. ...

June 8, 2023 · 2 min · Research Team

Permutation invariant Gaussian matrix models for financial correlation matrices

Permutation invariant Gaussian matrix models for financial correlation matrices ArXiv ID: 2306.04569 “View on arXiv” Authors: Unknown Abstract We construct an ensemble of correlation matrices from high-frequency foreign exchange market data, with one matrix for every day for 446 days. The matrices are symmetric and have vanishing diagonal elements after subtracting the identity matrix. For this case, we construct the general permutation invariant Gaussian matrix model, which has 4 parameters characterised using the representation theory of symmetric groups. The permutation invariant polynomial functions of the symmetric, diagonally vanishing matrices have a basis labelled by undirected loop-less graphs. Using the expectation values of the general linear and quadratic permutation invariant functions of the matrices in the dataset, the 4 parameters of the matrix model are determined. The model then predicts the expectation values of the cubic and quartic polynomials. These predictions are compared to the data to give strong evidence for a good overall fit of the permutation invariant Gaussian matrix model. The linear, quadratic, cubic and quartic polynomial functions are then used to define low-dimensional feature vectors for the days associated to the matrices. These vectors, with choices informed by the refined structure of small non-Gaussianities, are found to be effective as a tool for anomaly detection in market states: statistically significant correlations are established between atypical days as defined using these feature vectors, and days with significant economic events as recognized in standard foreign exchange economic calendars. They are also shown to be useful as a tool for ranking pairs of days in terms of their similarity, yielding a strongly statistically significant correlation with a ranking based on a higher dimensional proxy for visual similarity. ...

June 7, 2023 · 2 min · Research Team

Forecasting the Performance of US Stock Market Indices During COVID-19: RF vs LSTM

Forecasting the Performance of US Stock Market Indices During COVID-19: RF vs LSTM ArXiv ID: 2306.03620 “View on arXiv” Authors: Unknown Abstract The US stock market experienced instability following the recession (2007-2009). COVID-19 poses a significant challenge to US stock traders and investors. Traders and investors should keep up with the stock market. This is to mitigate risks and improve profits by using forecasting models that account for the effects of the pandemic. With consideration of the COVID-19 pandemic after the recession, two machine learning models, including Random Forest and LSTM are used to forecast two major US stock market indices. Data on historical prices after the big recession is used for developing machine learning models and forecasting index returns. To evaluate the model performance during training, cross-validation is used. Additionally, hyperparameter optimizing, regularization, such as dropouts and weight decays, and preprocessing improve the performances of Machine Learning techniques. Using high-accuracy machine learning techniques, traders and investors can forecast stock market behavior, stay ahead of their competition, and improve profitability. Keywords: COVID-19, LSTM, S&P500, Random Forest, Russell 2000, Forecasting, Machine Learning, Time Series JEL Code: C6, C8, G4. ...

June 6, 2023 · 2 min · Research Team

Swing contract pricing: with and without Neural Networks

Swing contract pricing: with and without Neural Networks ArXiv ID: 2306.03822 “View on arXiv” Authors: Unknown Abstract We propose two parametric approaches to evaluate swing contracts with firm constraints. Our objective is to define approximations for the optimal control, which represents the amounts of energy purchased throughout the contract. The first approach involves approximating the optimal control by means of an explicit parametric function, where the parameters are determined using stochastic gradient descent based algorithms. The second approach builds on the first one, where we replace parameters in the first approach by the output of a neural network. Our numerical experiments demonstrate that by using Langevin based algorithms, both parameterizations provide, in a short computation time, better prices compared to state-of-the-art methods. ...

June 6, 2023 · 2 min · Research Team

Explaining AI in Finance: Past, Present, Prospects

Explaining AI in Finance: Past, Present, Prospects ArXiv ID: 2306.02773 “View on arXiv” Authors: Unknown Abstract This paper explores the journey of AI in finance, with a particular focus on the crucial role and potential of Explainable AI (XAI). We trace AI’s evolution from early statistical methods to sophisticated machine learning, highlighting XAI’s role in popular financial applications. The paper underscores the superior interpretability of methods like Shapley values compared to traditional linear regression in complex financial scenarios. It emphasizes the necessity of further XAI research, given forthcoming EU regulations. The paper demonstrates, through simulations, that XAI enhances trust in AI systems, fostering more responsible decision-making within finance. ...

June 5, 2023 · 2 min · Research Team

HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and Regime-Switch VAE

HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and Regime-Switch VAE ArXiv ID: 2306.02848 “View on arXiv” Authors: Unknown Abstract Factor model is a fundamental investment tool in quantitative investment, which can be empowered by deep learning to become more flexible and efficient in practical complicated investing situations. However, it is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting, where the model can adapt itself to match the current market regime identified based on only point-in-time market information. To tackle this problem, we propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the underlying relationship between the market situation and stock-wise latent factors, so that HireVAE can effectively estimate useful latent factors given only historical market information and subsequently predict accurate stock returns. Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods, verifying the potential of such online and adaptive factor model. ...

June 5, 2023 · 2 min · Research Team

Optimal Market Making in the Chinese Stock Market: A Stochastic Control and Scenario Analysis

Optimal Market Making in the Chinese Stock Market: A Stochastic Control and Scenario Analysis ArXiv ID: 2306.02764 “View on arXiv” Authors: Unknown Abstract Market making plays a crucial role in providing liquidity and maintaining stability in financial markets, making it an essential component of well-functioning capital markets. Despite its importance, there is limited research on market making in the Chinese stock market, which is one of the largest and most rapidly growing markets globally. To address this gap, we employ an optimal market making framework with an exponential CARA-type (Constant Absolute Risk Aversion) utility function that accounts for various market conditions, such as price drift, volatility, and stamp duty, and is capable of describing 3 major risks (i.e., inventory, execution and adverse selection risks) in market making practice, and provide an in-depth quantitative and scenario analysis of market making in the Chinese stock market. Our numerical experiments explore the impact of volatility on the market maker’s inventory. Furthermore, we find that the stamp duty rate is a critical factor in market making, with a negative impact on both the profit of the market maker and the liquidity of the market. Additionally, our analysis emphasizes the significance of accurately estimating stock drift for managing inventory and adverse selection risks effectively and enhancing profit for the market maker. These findings offer valuable insights for both market makers and policymakers in the Chinese stock market and provide directions for further research in designing effective market making strategies and policies. ...

June 5, 2023 · 2 min · Research Team

Financial sentiment analysis using FinBERT with application in predicting stock movement

Financial sentiment analysis using FinBERT with application in predicting stock movement ArXiv ID: 2306.02136 “View on arXiv” Authors: Unknown Abstract In this study, we integrate sentiment analysis within a financial framework by leveraging FinBERT, a fine-tuned BERT model specialized for financial text, to construct an advanced deep learning model based on Long Short-Term Memory (LSTM) networks. Our objective is to forecast financial market trends with greater accuracy. To evaluate our model’s predictive capabilities, we apply it to a comprehensive dataset of stock market news and perform a comparative analysis against standard BERT, standalone LSTM, and the traditional ARIMA models. Our findings indicate that incorporating sentiment analysis significantly enhances the model’s ability to anticipate market fluctuations. Furthermore, we propose a suite of optimization techniques aimed at refining the model’s performance, paving the way for more robust and reliable market prediction tools in the field of AI-driven finance. ...

June 3, 2023 · 2 min · Research Team

The Role of Twitter in Cryptocurrency Pump-and-Dumps

The Role of Twitter in Cryptocurrency Pump-and-Dumps ArXiv ID: 2306.02148 “View on arXiv” Authors: Unknown Abstract We examine the influence of Twitter promotion on cryptocurrency pump-and-dump events. By analyzing abnormal returns, trading volume, and tweet activity, we uncover that Twitter effectively garners attention for pump-and-dump schemes, leading to notable effects on abnormal returns before the event. Our results indicate that investors relying on Twitter information exhibit delayed selling behavior during the post-dump phase, resulting in significant losses compared to other participants. These findings shed light on the pivotal role of Twitter promotion in cryptocurrency manipulation, offering valuable insights into participant behavior and market dynamics. ...

June 3, 2023 · 1 min · Research Team

A systematic literature review on solution approaches for the index tracking problem in the last decade

A systematic literature review on solution approaches for the index tracking problem in the last decade ArXiv ID: 2306.01660 “View on arXiv” Authors: Unknown Abstract The passive management approach offers conservative investors a way to reduce risk concerning the market. This investment strategy aims at replicating a specific index, such as the NASDAQ Composite or the FTSE100 index. The problem is that buying all the index’s assets incurs high rebalancing costs, and this harms future returns. The index tracking problem concerns building a portfolio that follows a specific benchmark with fewer transaction costs. Since a subset of assets is required to solve the index problem this class of problems is NP-hard, and in the past years, researchers have been studying solution approaches to obtain tracking portfolios more practically. This work brings an analysis, spanning the last decade, of the advances in mathematical approaches for index tracking. The systematic literature review covered important issues, such as the most relevant research areas, solution methods, and model structures. Special attention was given to the exploration and analysis of metaheuristics applied to the index tracking problem. ...

June 2, 2023 · 2 min · Research Team