Detection of False Investment Strategies Using Unsupervised Learning Methods
Detection of False Investment Strategies Using Unsupervised Learning Methods ArXiv ID: ssrn-3167017 “View on arXiv” Authors: Unknown Abstract Most investment strategies uncovered by practitioners and academics are false. This partially explains the high rate of failure, especially among quantitative h Keywords: quantitative finance, investment strategies, backtesting bias, market efficiency, quantitative strategies Complexity vs Empirical Score Math Complexity: 7.5/10 Empirical Rigor: 2.0/10 Quadrant: Lab Rats Why: The paper introduces a complex unsupervised learning algorithm involving probability distributions and multiple testing corrections, but lacks specific implementation details, code, or detailed backtesting results, focusing more on theoretical and statistical methodology. flowchart TD A["Research Goal:<br>Detect false quantitative investment strategies"] --> B["Methodology:<br>Unsupervised Learning (e.g., Clustering)"] B --> C["Data Inputs:<br>Strategy Returns, Factor Loadings, Backtest Metrics"] C --> D["Computational Process:<br>Identify Outliers & Anomalies in Strategy Space"] D --> E["Key Findings:<br>Strategies are often noise; high failure rate due to backtesting bias"]