false

Dynamic Grid Trading Strategy: From Zero Expectation to Market Outperformance

Dynamic Grid Trading Strategy: From Zero Expectation to Market Outperformance ArXiv ID: 2506.11921 “View on arXiv” Authors: Kai-Yuan Chen, Kai-Hsin Chen, Jyh-Shing Roger Jang Abstract We propose a profitable trading strategy for the cryptocurrency market based on grid trading. Starting with an analysis of the expected value of the traditional grid strategy, we show that under simple assumptions, its expected return is essentially zero. We then introduce a novel Dynamic Grid-based Trading (DGT) strategy that adapts to market conditions by dynamically resetting grid positions. Our backtesting results using minute-level data from Bitcoin and Ethereum between January 2021 and July 2024 demonstrate that the DGT strategy significantly outperforms both the traditional grid and buy-and-hold strategies in terms of internal rate of return and risk control. ...

June 13, 2025 · 2 min · Research Team

Multi-dimensional queue-reactive model and signal-driven models: a unified framework

Multi-dimensional queue-reactive model and signal-driven models: a unified framework ArXiv ID: 2506.11843 “View on arXiv” Authors: Emmanouil Sfendourakis Abstract We present a Markovian market model driven by a hidden Brownian efficient price. In particular, we extend the queue-reactive model, making its dynamics dependent on the efficient price. Our study focuses on two sub-models: a signal-driven price model where the mid-price jump rates depend on the efficient price and an observable signal, and the usual queue-reactive model dependent on the efficient price via the intensities of the order arrivals. This way, we are able to correlate the evolution of limit order books of different stocks. We prove the stability of the observed mid-price around the efficient price under natural assumptions. Precisely, we show that at the macroscopic scale, prices behave as diffusions. We also develop a maximum likelihood estimation procedure for the model, and test it numerically. Our model is them used to backest trading strategies in a liquidation context. ...

June 13, 2025 · 2 min · Research Team

Optimal Execution under Liquidity Uncertainty

Optimal Execution under Liquidity Uncertainty ArXiv ID: 2506.11813 “View on arXiv” Authors: Etienne Chevalier, Yadh Hafsi, Vathana Ly Vath, Sergio Pulido Abstract We study an optimal execution strategy for purchasing a large block of shares over a fixed time horizon. The execution problem is subject to a general price impact that gradually dissipates due to market resilience. This resilience is modeled through a potentially arbitrary limit-order book shape. To account for liquidity dynamics, we introduce a stochastic volume effect governing the recovery of the deviation process, which represents the difference between the impacted and unaffected price. Additionally, we incorporate stochastic liquidity variations through a regime-switching Markov chain to capture abrupt shifts in market conditions. We study this singular control problem, where the trader optimally determines the timing and rate of purchases to minimize execution costs. The associated value function to this optimization problem is shown to satisfy a system of variational Hamilton-Jacobi-Bellman inequalities. Moreover, we establish that it is the unique viscosity solution to this HJB system and study the analytical properties of the free boundary separating the execution and continuation regions. To illustrate our results, we present numerical examples under different limit-order book configurations, highlighting the interplay between price impact, resilience dynamics, and stochastic liquidity regimes in shaping the optimal execution strategy. ...

June 13, 2025 · 2 min · Research Team

On the Weak Error for Local Stochastic Volatility Models

On the Weak Error for Local Stochastic Volatility Models ArXiv ID: 2506.10817 “View on arXiv” Authors: Peter K. Friz, Benjamin Jourdain, Thomas Wagenhofer, Alexandre Zhou Abstract Local stochastic volatility refers to a popular model class in applied mathematical finance that allows for “calibration-on-the-fly”, typically via a particle method, derived from a formal McKean-Vlasov equation. Well-posedness of this limit is a well-known problem in the field; the general case is largely open, despite recent progress in Markovian situations. Our take is to start with a well-defined Euler approximation to the formal McKean-Vlasov equation, followed by a newly established half-step-scheme, allowing for good approximations of conditional expectations. In a sense, we do Euler first, particle second in contrast to previous works that start with the particle approximation. We show weak order one for the Euler discretization, plus error terms that account for the said approximation. The case of particle approximation is discussed in detail and the error rate is given in dependence of all parameters used. ...

June 12, 2025 · 2 min · Research Team

Advancing Exchange Rate Forecasting: Leveraging Machine Learning and AI for Enhanced Accuracy in Global Financial Markets

Advancing Exchange Rate Forecasting: Leveraging Machine Learning and AI for Enhanced Accuracy in Global Financial Markets ArXiv ID: 2506.09851 “View on arXiv” Authors: Md. Yeasin Rahat, Rajan Das Gupta, Nur Raisa Rahman, Sudipto Roy Pritom, Samiur Rahman Shakir, Md Imrul Hasan Showmick, Md. Jakir Hossen Abstract The prediction of foreign exchange rates, such as the US Dollar (USD) to Bangladeshi Taka (BDT), plays a pivotal role in global financial markets, influencing trade, investments, and economic stability. This study leverages historical USD/BDT exchange rate data from 2018 to 2023, sourced from Yahoo Finance, to develop advanced machine learning models for accurate forecasting. A Long Short-Term Memory (LSTM) neural network is employed, achieving an exceptional accuracy of 99.449%, a Root Mean Square Error (RMSE) of 0.9858, and a test loss of 0.8523, significantly outperforming traditional methods like ARIMA (RMSE 1.342). Additionally, a Gradient Boosting Classifier (GBC) is applied for directional prediction, with backtesting on a $10,000 initial capital revealing a 40.82% profitable trade rate, though resulting in a net loss of $20,653.25 over 49 trades. The study analyzes historical trends, showing a decline in BDT/USD rates from 0.012 to 0.009, and incorporates normalized daily returns to capture volatility. These findings highlight the potential of deep learning in forex forecasting, offering traders and policymakers robust tools to mitigate risks. Future work could integrate sentiment analysis and real-time economic indicators to further enhance model adaptability in volatile markets. ...

June 11, 2025 · 2 min · Research Team

EDINET-Bench: Evaluating LLMs on Complex Financial Tasks using Japanese Financial Statements

EDINET-Bench: Evaluating LLMs on Complex Financial Tasks using Japanese Financial Statements ArXiv ID: 2506.08762 “View on arXiv” Authors: Issa Sugiura, Takashi Ishida, Taro Makino, Chieko Tazuke, Takanori Nakagawa, Kosuke Nakago, David Ha Abstract Financial analysis presents complex challenges that could leverage large language model (LLM) capabilities. However, the scarcity of challenging financial datasets, particularly for Japanese financial data, impedes academic innovation in financial analytics. As LLMs advance, this lack of accessible research resources increasingly hinders their development and evaluation in this specialized domain. To address this gap, we introduce EDINET-Bench, an open-source Japanese financial benchmark designed to evaluate the performance of LLMs on challenging financial tasks including accounting fraud detection, earnings forecasting, and industry prediction. EDINET-Bench is constructed by downloading annual reports from the past 10 years from Japan’s Electronic Disclosure for Investors’ NETwork (EDINET) and automatically assigning labels corresponding to each evaluation task. Our experiments reveal that even state-of-the-art LLMs struggle, performing only slightly better than logistic regression in binary classification for fraud detection and earnings forecasting. These results highlight significant challenges in applying LLMs to real-world financial applications and underscore the need for domain-specific adaptation. Our dataset, benchmark construction code, and evaluation code is publicly available to facilitate future research in finance with LLMs. ...

June 10, 2025 · 2 min · Research Team

FinHEAR: Human Expertise and Adaptive Risk-Aware Temporal Reasoning for Financial Decision-Making

FinHEAR: Human Expertise and Adaptive Risk-Aware Temporal Reasoning for Financial Decision-Making ArXiv ID: 2506.09080 “View on arXiv” Authors: Jiaxiang Chen, Mingxi Zou, Zhuo Wang, Qifan Wang, Dongning Sun, Chi Zhang, Zenglin Xu Abstract Financial decision-making presents unique challenges for language models, demanding temporal reasoning, adaptive risk assessment, and responsiveness to dynamic events. While large language models (LLMs) show strong general reasoning capabilities, they often fail to capture behavioral patterns central to human financial decisions-such as expert reliance under information asymmetry, loss-averse sensitivity, and feedback-driven temporal adjustment. We propose FinHEAR, a multi-agent framework for Human Expertise and Adaptive Risk-aware reasoning. FinHEAR orchestrates specialized LLM-based agents to analyze historical trends, interpret current events, and retrieve expert-informed precedents within an event-centric pipeline. Grounded in behavioral economics, it incorporates expert-guided retrieval, confidence-adjusted position sizing, and outcome-based refinement to enhance interpretability and robustness. Empirical results on curated financial datasets show that FinHEAR consistently outperforms strong baselines across trend prediction and trading tasks, achieving higher accuracy and better risk-adjusted returns. ...

June 10, 2025 · 2 min · Research Team

Optimal hedging of an informed broker facing many traders

Optimal hedging of an informed broker facing many traders ArXiv ID: 2506.08992 “View on arXiv” Authors: Philippe Bergault, Pierre Cardaliaguet, Wenbin Yan Abstract This paper investigates the optimal hedging strategies of an informed broker interacting with multiple traders in a financial market. We develop a theoretical framework in which the broker, possessing exclusive information about the drift of the asset’s price, engages with traders whose trading activities impact the market price. Using a mean-field game approach, we derive the equilibrium strategies for both the broker and the traders, illustrating the intricate dynamics of their interactions. The broker’s optimal strategy involves a Stackelberg equilibrium, where the broker leads and the traders follow. Our analysis also addresses the mean field limit of finite-player models and shows the convergence to the mean-field solution as the number of traders becomes large. ...

June 10, 2025 · 2 min · Research Team

Price Discovery in Cryptocurrency Markets

Price Discovery in Cryptocurrency Markets ArXiv ID: 2506.08718 “View on arXiv” Authors: Juan Plazuelo Pascual, Carlos Tardon Rubio, Juan Toro Cebada, Angel Hernando Veciana Abstract This document analyzes price discovery in cryptocurrency markets by comparing centralized and decentralized exchanges, as well as spot and futures markets. The study focuses first on Ethereum (ETH) and then applies a similar approach to Bitcoin (BTC). Chapter 1 outlines the theoretical framework, emphasizing the structural differences between centralized exchanges and decentralized finance mechanisms, especially Automated Market Makers (AMMs). It also explains how to construct an order book from a liquidity pool in a decentralized setting for comparison with centralized exchanges. Chapter 2 describes the methodological tools used: Hasbrouck’s Information Share, Gonzalo and Granger’s Permanent-Transitory decomposition, and the Hayashi-Yoshida estimator. These are applied to explore lead-lag dynamics, cointegration, and price discovery across market types. Chapter 3 presents the empirical analysis. For ETH, it compares price dynamics on Binance and Uniswap v2 over a one-year period, focusing on five key events in 2024. For BTC, it analyzes the relationship between spot and futures prices on the CME. The study estimates lead-lag effects and cointegration in both cases. Results show that centralized markets typically lead in ETH price discovery. In futures markets, while they tend to lead overall, high-volatility periods produce mixed outcomes. The findings have key implications for traders and institutions regarding liquidity, arbitrage, and market efficiency. Various metrics are used to benchmark the performance of modified AMMs and to understand the interaction between decentralized and centralized structures. ...

June 10, 2025 · 2 min · Research Team

Benchmarking Pre-Trained Time Series Models for Electricity Price Forecasting

Benchmarking Pre-Trained Time Series Models for Electricity Price Forecasting ArXiv ID: 2506.08113 “View on arXiv” Authors: Timothée Hornek Amir Sartipi, Igor Tchappi, Gilbert Fridgen Abstract Accurate electricity price forecasting (EPF) is crucial for effective decision-making in power trading on the spot market. While recent advances in generative artificial intelligence (GenAI) and pre-trained large language models (LLMs) have inspired the development of numerous time series foundation models (TSFMs) for time series forecasting, their effectiveness in EPF remains uncertain. To address this gap, we benchmark several state-of-the-art pretrained models–Chronos-Bolt, Chronos-T5, TimesFM, Moirai, Time-MoE, and TimeGPT–against established statistical and machine learning (ML) methods for EPF. Using 2024 day-ahead auction (DAA) electricity prices from Germany, France, the Netherlands, Austria, and Belgium, we generate daily forecasts with a one-day horizon. Chronos-Bolt and Time-MoE emerge as the strongest among the TSFMs, performing on par with traditional models. However, the biseasonal MSTL model, which captures daily and weekly seasonality, stands out for its consistent performance across countries and evaluation metrics, with no TSFM statistically outperforming it. ...

June 9, 2025 · 2 min · Research Team