false

Trading Graph Neural Network

Trading Graph Neural Network ArXiv ID: 2504.07923 “View on arXiv” Authors: Unknown Abstract This paper proposes a new algorithm – Trading Graph Neural Network (TGNN) that can structurally estimate the impact of asset features, dealer features and relationship features on asset prices in trading networks. It combines the strength of the traditional simulated method of moments (SMM) and recent machine learning techniques – Graph Neural Network (GNN). It outperforms existing reduced-form methods with network centrality measures in prediction accuracy. The method can be used on networks with any structure, allowing for heterogeneity among both traders and assets. ...

April 10, 2025 · 2 min · Research Team

Diffusion Factor Models: Generating High-Dimensional Returns with Factor Structure

Diffusion Factor Models: Generating High-Dimensional Returns with Factor Structure ArXiv ID: 2504.06566 “View on arXiv” Authors: Unknown Abstract Financial scenario simulation is essential for risk management and portfolio optimization, yet it remains challenging especially in high-dimensional and small data settings common in finance. We propose a diffusion factor model that integrates latent factor structure into generative diffusion processes, bridging econometrics with modern generative AI to address the challenges of the curse of dimensionality and data scarcity in financial simulation. By exploiting the low-dimensional factor structure inherent in asset returns, we decompose the score function–a key component in diffusion models–using time-varying orthogonal projections, and this decomposition is incorporated into the design of neural network architectures. We derive rigorous statistical guarantees, establishing nonasymptotic error bounds for both score estimation at O(d^{“5/2”} n^{"-2/(k+5)"}) and generated distribution at O(d^{“5/4”} n^{"-1/2(k+5)"}), primarily driven by the intrinsic factor dimension k rather than the number of assets d, surpassing the dimension-dependent limits in the classical nonparametric statistics literature and making the framework viable for markets with thousands of assets. Numerical studies confirm superior performance in latent subspace recovery under small data regimes. Empirical analysis demonstrates the economic significance of our framework in constructing mean-variance optimal portfolios and factor portfolios. This work presents the first theoretical integration of factor structure with diffusion models, offering a principled approach for high-dimensional financial simulation with limited data. Our code is available at https://github.com/xymmmm00/diffusion_factor_model. ...

April 9, 2025 · 2 min · Research Team

Maximizing Battery Storage Profits via High-Frequency Intraday Trading

Maximizing Battery Storage Profits via High-Frequency Intraday Trading ArXiv ID: 2504.06932 “View on arXiv” Authors: Unknown Abstract Maximizing revenue for grid-scale battery energy storage systems in continuous intraday electricity markets requires strategies that are able to seize trading opportunities as soon as new information arrives. This paper introduces and evaluates an automated high-frequency trading strategy for battery energy storage systems trading on the intraday market for power while explicitly considering the dynamics of the limit order book, market rules, and technical parameters. The standard rolling intrinsic strategy is adapted for continuous intraday electricity markets and solved using a dynamic programming approximation that is two to three orders of magnitude faster than an exact mixed-integer linear programming solution. A detailed backtest over a full year of German order book data demonstrates that the proposed dynamic programming formulation does not reduce trading profits and enables the policy to react to every relevant order book update, enabling realistic rapid backtesting. Our results show the significant revenue potential of high-frequency trading: our policy earns 58% more than when re-optimizing only once every hour and 14% more than when re-optimizing once per minute, highlighting that profits critically depend on trading speed. Furthermore, we leverage the speed of our algorithm to train a parametric extension of the rolling intrinsic, increasing yearly revenue by 8.4% out of sample. ...

April 9, 2025 · 2 min · Research Team

Optimal Execution and Macroscopic Market Making

Optimal Execution and Macroscopic Market Making ArXiv ID: 2504.06717 “View on arXiv” Authors: Unknown Abstract We propose a stochastic game modelling the strategic interaction between market makers and traders of optimal execution type. For traders, the permanent price impact commonly attributed to them is replaced by quoting strategies implemented by market makers. For market makers, order flows become endogenous, driven by tactical traders rather than assumed exogenously. Using the forward-backward stochastic differential equation (FBSDE) characterization of Nash equilibria, we establish a local well-posedness result for the general game. In the specific Almgren-Chriss-Avellaneda-Stoikov model, a decoupling approach guarantees the global well-posedness of the FBSDE system via the well-posedness of an associated backward stochastic Riccati equation. Finally, by introducing small diffusion terms into the inventory processes, global well-posedness is achieved for the approximation game. ...

April 9, 2025 · 2 min · Research Team

Polyspectral Mean based Time Series Clustering of Indian Stock Market

Polyspectral Mean based Time Series Clustering of Indian Stock Market ArXiv ID: 2504.07021 “View on arXiv” Authors: Unknown Abstract In this study, we employ k-means clustering algorithm of polyspectral means to analyze 49 stocks in the Indian stock market. We have used spectral and bispectral information obtained from the data, by using spectral and bispectral means with different weight functions that will give us varying insights into the temporal patterns of the stocks. In particular, the higher order polyspectral means can provide significantly more information than what we can gather from power spectra, and can also unveil nonlinear trends in a time series. Through rigorous analysis, we identify five distinctive clusters, uncovering nuanced market structures. Notably, one cluster emerges as that of a conglomerate powerhouse, featuring ADANI, BIRLA, TATA, and unexpectedly, government-owned bank SBI. Another cluster spotlights the IT sector with WIPRO and TCS, while a third combines private banks, government entities, and RELIANCE. The final cluster comprises publicly traded companies with dispersed ownership. Such clustering of stocks sheds light on intricate financial relationships within the stock market, providing valuable insights for investors and analysts navigating the dynamic landscape of the Indian stock market. ...

April 9, 2025 · 2 min · Research Team

A Mean-Reverting Model of Exchange Rate Risk Premium Using Ornstein-Uhlenbeck Dynamics

A Mean-Reverting Model of Exchange Rate Risk Premium Using Ornstein-Uhlenbeck Dynamics ArXiv ID: 2504.06028 “View on arXiv” Authors: Unknown Abstract This paper examines the empirical failure of uncovered interest parity (UIP) and proposes a structural explanation based on a mean-reverting risk premium. We define a realized premium as the deviation between observed exchange rate returns and the interest rate differential, and demonstrate its strong mean-reverting behavior across multiple horizons. Motivated by this pattern, we model the risk premium using an Ornstein-Uhlenbeck (OU) process embedded within a stochastic differential equation for the exchange rate. Our model yields closed-form approximations for future exchange rate distributions, which we evaluate using coverage-based backtesting. Applied to USD/KRW data from 2010 to 2025, the model shows strong predictive performance at both short-term and long-term horizons, while underperforming at intermediate (3-month) horizons and showing conservative behavior in the tails of long-term forecasts. These results suggest that exchange rate deviations from UIP may reflect structured, forecastable dynamics rather than pure noise, and point to future modeling improvements via regime-switching or time-varying volatility. ...

April 8, 2025 · 2 min · Research Team

Are Generative AI Agents Effective Personalized Financial Advisors?

Are Generative AI Agents Effective Personalized Financial Advisors? ArXiv ID: 2504.05862 “View on arXiv” Authors: Unknown Abstract Large language model-based agents are becoming increasingly popular as a low-cost mechanism to provide personalized, conversational advice, and have demonstrated impressive capabilities in relatively simple scenarios, such as movie recommendations. But how do these agents perform in complex high-stakes domains, where domain expertise is essential and mistakes carry substantial risk? This paper investigates the effectiveness of LLM-advisors in the finance domain, focusing on three distinct challenges: (1) eliciting user preferences when users themselves may be unsure of their needs, (2) providing personalized guidance for diverse investment preferences, and (3) leveraging advisor personality to build relationships and foster trust. Via a lab-based user study with 64 participants, we show that LLM-advisors often match human advisor performance when eliciting preferences, although they can struggle to resolve conflicting user needs. When providing personalized advice, the LLM was able to positively influence user behavior, but demonstrated clear failure modes. Our results show that accurate preference elicitation is key, otherwise, the LLM-advisor has little impact, or can even direct the investor toward unsuitable assets. More worryingly, users appear insensitive to the quality of advice being given, or worse these can have an inverse relationship. Indeed, users reported a preference for and increased satisfaction as well as emotional trust with LLMs adopting an extroverted persona, even though those agents provided worse advice. ...

April 8, 2025 · 2 min · Research Team

Causal Portfolio Optimization: Principles and Sensitivity-Based Solutions

Causal Portfolio Optimization: Principles and Sensitivity-Based Solutions ArXiv ID: 2504.05743 “View on arXiv” Authors: Unknown Abstract Fundamental and necessary principles for achieving efficient portfolio optimization based on asset and diversification dynamics are presented. The Commonality Principle is a necessary and sufficient condition for identifying optimal drivers of a portfolio in terms of its diversification dynamics. The proof relies on the Reichenbach Common Cause Principle, along with the fact that the sensitivities of portfolio constituents with respect to the common causal drivers are themselves causal. A conformal map preserves idiosyncratic diversification from the unconditional setting while optimizing systematic diversification on an embedded space of these sensitivities. Causal methodologies for combinatorial driver selection are presented, such as the use of Bayesian networks and correlation-based algorithms from Reichenbach’s principle. Limitations of linear models in capturing causality are discussed, and included for completeness alongside more advanced models such as neural networks. Portfolio optimization methods are presented that map risk from the sensitivity space to other risk measures of interest. Finally, the work introduces a novel risk management framework based on Common Causal Manifolds, including both theoretical development and experimental validation. The sensitivity space is predicted along the common causal manifold, which is modeled as a causal time system. Sensitivities are forecasted using SDEs calibrated to data previously extracted from neural networks to move along the manifold via its tangent bundles. An optimization method is then proposed that accumulates information across future predicted tangent bundles on the common causal time system manifold. It aggregates sensitivity-based distance metrics along the trajectory to build a comprehensive sensitivity distance matrix. This matrix enables trajectory-wide optimal diversification, taking into account future dynamics. ...

April 8, 2025 · 2 min · Research Team

Financial resilience of agricultural and food production companies in Spain: A compositional cluster analysis of the impact of the Ukraine-Russia war (2021-2023)

Financial resilience of agricultural and food production companies in Spain: A compositional cluster analysis of the impact of the Ukraine-Russia war (2021-2023) ArXiv ID: 2504.05912 “View on arXiv” Authors: Unknown Abstract This study analyzes the financial resilience of agricultural and food production companies in Spain amid the Ukraine-Russia war using cluster analysis based on financial ratios. This research utilizes centered log-ratios to transform financial ratios for compositional data analysis. The dataset comprises financial information from 1197 firms in Spain’s agricultural and food sectors over the period 2021-2023. The analysis reveals distinct clusters of firms with varying financial performance, characterized by metrics of solvency and profitability. The results highlight an increase in resilient firms by 2023, underscoring sectoral adaptation to the conflict’s economic challenges. These findings together provide insights for stakeholders and policymakers to improve sectorial stability and strategic planning. ...

April 8, 2025 · 2 min · Research Team

Deep Reinforcement Learning Algorithms for Option Hedging

Deep Reinforcement Learning Algorithms for Option Hedging ArXiv ID: 2504.05521 “View on arXiv” Authors: Unknown Abstract Dynamic hedging is a financial strategy that consists in periodically transacting one or multiple financial assets to offset the risk associated with a correlated liability. Deep Reinforcement Learning (DRL) algorithms have been used to find optimal solutions to dynamic hedging problems by framing them as sequential decision-making problems. However, most previous work assesses the performance of only one or two DRL algorithms, making an objective comparison across algorithms difficult. In this paper, we compare the performance of eight DRL algorithms in the context of dynamic hedging; Monte Carlo Policy Gradient (MCPG), Proximal Policy Optimization (PPO), along with four variants of Deep Q-Learning (DQL) and two variants of Deep Deterministic Policy Gradient (DDPG). Two of these variants represent a novel application to the task of dynamic hedging. In our experiments, we use the Black-Scholes delta hedge as a baseline and simulate the dataset using a GJR-GARCH(1,1) model. Results show that MCPG, followed by PPO, obtain the best performance in terms of the root semi-quadratic penalty. Moreover, MCPG is the only algorithm to outperform the Black-Scholes delta hedge baseline with the allotted computational budget, possibly due to the sparsity of rewards in our environment. ...

April 7, 2025 · 2 min · Research Team