false

Hierarchical Minimum Variance Portfolios: A Theoretical and Algorithmic Approach

Hierarchical Minimum Variance Portfolios: A Theoretical and Algorithmic Approach ArXiv ID: 2503.12328 “View on arXiv” Authors: Unknown Abstract We introduce a novel approach to portfolio optimization that leverages hierarchical graph structures and the Schur complement method to systematically reduce computational complexity while preserving full covariance information. Inspired by Lopez de Prados hierarchical risk parity and Cottons Schur complement methods, our framework models the covariance matrix as an adjacency-like structure of a hierarchical graph. We demonstrate that portfolio optimization can be recursively reduced across hierarchical levels, allowing optimal weights to be computed efficiently by inverting only small submatrices regardless of portfolio size. Moreover, we translate our results into a recursive algorithm that constructs optimal portfolio allocations. Our results reveal a transparent and mathematically rigorous connection between classical Markowitz mean-variance optimization, hierarchical clustering, and the Schur complement method. ...

March 16, 2025 · 2 min · Research Team

Intraday Battery Dispatch for Hybrid Renewable Energy Assets

Intraday Battery Dispatch for Hybrid Renewable Energy Assets ArXiv ID: 2503.12305 “View on arXiv” Authors: Unknown Abstract We develop a mathematical model for intraday dispatch of co-located wind-battery energy assets. Focusing on the primary objective of firming grid-side actual production vis-a-vis the preset day-ahead hourly generation targets, we conduct a comprehensive study of the resulting stochastic control problem across different firming formulations and wind generation dynamics. Among others, we provide a closed-form solution in the special case of a quadratic objective and linear dynamics, as well as design a novel adaptation of a Gaussian Process-based Regression Monte Carlo algorithm for our setting. Extensions studied include an asymmetric loss function for peak shaving, capturing the cost of battery cycling, and the role of battery duration. In the applied portion of our work, we calibrate our model to a collection of 140+ wind-battery assets in Texas, benchmarking the economic benefits of firming based on outputs of a realistic unit commitment and economic dispatch solver. ...

March 16, 2025 · 2 min · Research Team

Realized Volatility Forecasting for New Issues and Spin-Offs using Multi-Source Transfer Learning

Realized Volatility Forecasting for New Issues and Spin-Offs using Multi-Source Transfer Learning ArXiv ID: 2503.12648 “View on arXiv” Authors: Unknown Abstract Forecasting the volatility of financial assets is essential for various financial applications. This paper addresses the challenging task of forecasting the volatility of financial assets with limited historical data, such as new issues or spin-offs, by proposing a multi-source transfer learning approach. Specifically, we exploit complementary source data of assets with a substantial historical data record by selecting source time series instances that are most similar to the limited target data of the new issue/spin-off. Based on these instances and the target data, we estimate linear and non-linear realized volatility models and compare their forecasting performance to forecasts of models trained exclusively on the target data, and models trained on the entire source and target data. The results show that our transfer learning approach outperforms the alternative models and that the integration of complementary data is also beneficial immediately after the initial trading day of the new issue/spin-off. ...

March 16, 2025 · 2 min · Research Team

What Can 240,000 New Credit Transactions Tell Us About the Impact of NGEU Funds?

What Can 240,000 New Credit Transactions Tell Us About the Impact of NGEU Funds? ArXiv ID: 2504.01964 “View on arXiv” Authors: Unknown Abstract Using a panel data local projections model and controlling for firm characteristics, procurement bid attributes, and macroeconomic conditions, the study estimates the dynamic effects of procurement awards on new lending, a more precise measure than the change in the stock of credit. The analysis further examines heterogeneity in credit responses based on firm size, industry, credit maturity, and value chain position of the firms. The empirical evidence confirms that public procurement awards significantly increase new lending, with NGEU-funded contracts generating stronger credit expansion than traditional procurement during the recent period. The results show that the impact of NGEU procurement programs aligns closely with historical procurement impacts, with differences driven mainly by lower utilization rates. Moreover, integrating high-frequency financial data with procurement records highlights the potential of Big Data in refining public policy design. ...

March 16, 2025 · 2 min · Research Team

Vote Delegation in DeFi Governance

Vote Delegation in DeFi Governance ArXiv ID: 2503.11940 “View on arXiv” Authors: Unknown Abstract We investigate the drivers of vote delegation in Decentralized Autonomous Organizations (DAOs), using the Uniswap governance DAO as a laboratory. We show that parties with fewer self-owned votes and those affiliated with the controlling venture capital firm, Andreesen Horowitz (a16z), receive more vote delegations. These patterns suggest that while the Uniswap ecosystem values decentralization, a16z may engage in window-dressing around it. Moreover, we find that an active and successful track record in submitting improvement proposals, especially in the final stage, leads to more vote delegations, indicating that delegation in DAOs is at least partly reputation- or merit-based. Combined, our findings provide new insights into how governance and decentralization operate in DeFi. ...

March 15, 2025 · 2 min · Research Team

Bridging Language Models and Financial Analysis

Bridging Language Models and Financial Analysis ArXiv ID: 2503.22693 “View on arXiv” Authors: Unknown Abstract The rapid advancements in Large Language Models (LLMs) have unlocked transformative possibilities in natural language processing, particularly within the financial sector. Financial data is often embedded in intricate relationships across textual content, numerical tables, and visual charts, posing challenges that traditional methods struggle to address effectively. However, the emergence of LLMs offers new pathways for processing and analyzing this multifaceted data with increased efficiency and insight. Despite the fast pace of innovation in LLM research, there remains a significant gap in their practical adoption within the finance industry, where cautious integration and long-term validation are prioritized. This disparity has led to a slower implementation of emerging LLM techniques, despite their immense potential in financial applications. As a result, many of the latest advancements in LLM technology remain underexplored or not fully utilized in this domain. This survey seeks to bridge this gap by providing a comprehensive overview of recent developments in LLM research and examining their applicability to the financial sector. Building on previous survey literature, we highlight several novel LLM methodologies, exploring their distinctive capabilities and their potential relevance to financial data analysis. By synthesizing insights from a broad range of studies, this paper aims to serve as a valuable resource for researchers and practitioners, offering direction on promising research avenues and outlining future opportunities for advancing LLM applications in finance. ...

March 14, 2025 · 2 min · Research Team

Pricing American Parisian Options under General Time-Inhomogeneous Markov Models

Pricing American Parisian Options under General Time-Inhomogeneous Markov Models ArXiv ID: 2503.11053 “View on arXiv” Authors: Unknown Abstract This paper develops general approaches for pricing various types of American-style Parisian options (down-in/-out, perpetual/finite-maturity) with general payoff functions based on continuous-time Markov chain (CTMC) approximation under general 1D time-inhomogeneous Markov models. For the down-in types, by conditioning on the Parisian stopping time, we reduce the pricing problem to that of a series of vanilla American options with different maturities and their prices integrated with the distribution function of the Parisian stopping time yield the American Parisian down-in option price. This facilitates an efficient application of CTMC approximation to obtain the approximate option price by calculating the required quantities. For the perpetual down-in cases under time-homogeneous models, significant computational cost can be reduced. The down-out cases are more complicated, for which we use the state augmentation approach to record the excursion duration and then the approximate option price is obtained by solving a series of variational inequalities recursively with the Lemke’s pivoting method. We show the convergence of CTMC approximation for all the types of American Parisian options under general time-inhomogeneous Markov models, and the accuracy and efficiency of our algorithms are confirmed with extensive numerical experiments. ...

March 14, 2025 · 2 min · Research Team

Tactical Asset Allocation with Macroeconomic Regime Detection

Tactical Asset Allocation with Macroeconomic Regime Detection ArXiv ID: 2503.11499 “View on arXiv” Authors: Unknown Abstract This paper extends the tactical asset allocation literature by incorporating regime modeling using techniques from machine learning. We propose a novel model that classifies current regimes, forecasts the distribution of future regimes, and integrates these forecasts with the historical performance of individual assets to optimize portfolio allocations. Utilizing a macroeconomic data set from the FRED-MD database, our approach employs a modified k-means algorithm to ensure consistent regime classification over time. We then leverage these regime predictions to estimate expected returns and volatilities, which are subsequently mapped into portfolio allocations using various sizing schemes. Our method outperforms traditional benchmarks such as equal-weight, buy-and-hold, and random regime models. Additionally, we are the first to apply a regime detection model from a large macroeconomic dataset to tactical asset allocation, demonstrating significant improvements in portfolio performance. Our work presents several key contributions, including a novel data-driven regime detection algorithm tailored for uncertainty in forecasted regimes and applying the FRED-MD data set for tactical asset allocation. ...

March 14, 2025 · 2 min · Research Team

Label Unbalance in High-frequency Trading

Label Unbalance in High-frequency Trading ArXiv ID: 2503.09988 “View on arXiv” Authors: Unknown Abstract In financial trading, return prediction is one of the foundation for a successful trading system. By the fast development of the deep learning in various areas such as graphical processing, natural language, it has also demonstrate significant edge in handling with financial data. While the success of the deep learning relies on huge amount of labeled sample, labeling each time/event as profitable or unprofitable, under the transaction cost, especially in the high-frequency trading world, suffers from serious label imbalance issue.In this paper, we adopts rigurious end-to-end deep learning framework with comprehensive label imbalance adjustment methods and succeed in predicting in high-frequency return in the Chinese future market. The code for our method is publicly available at https://github.com/RS2002/Label-Unbalance-in-High-Frequency-Trading . ...

March 13, 2025 · 2 min · Research Team

A Deep Reinforcement Learning Approach to Automated Stock Trading, using xLSTM Networks

A Deep Reinforcement Learning Approach to Automated Stock Trading, using xLSTM Networks ArXiv ID: 2503.09655 “View on arXiv” Authors: Unknown Abstract Traditional Long Short-Term Memory (LSTM) networks are effective for handling sequential data but have limitations such as gradient vanishing and difficulty in capturing long-term dependencies, which can impact their performance in dynamic and risky environments like stock trading. To address these limitations, this study explores the usage of the newly introduced Extended Long Short Term Memory (xLSTM) network in combination with a deep reinforcement learning (DRL) approach for automated stock trading. Our proposed method utilizes xLSTM networks in both actor and critic components, enabling effective handling of time series data and dynamic market environments. Proximal Policy Optimization (PPO), with its ability to balance exploration and exploitation, is employed to optimize the trading strategy. Experiments were conducted using financial data from major tech companies over a comprehensive timeline, demonstrating that the xLSTM-based model outperforms LSTM-based methods in key trading evaluation metrics, including cumulative return, average profitability per trade, maximum earning rate, maximum pullback, and Sharpe ratio. These findings mark the potential of xLSTM for enhancing DRL-based stock trading systems. ...

March 12, 2025 · 2 min · Research Team