AI-Powered (Finance) Scholarship
AI-Powered (Finance) Scholarship ArXiv ID: ssrn-5060022 “View on arXiv” Authors: Unknown Abstract Keywords: Generative AI, Large Language Models (LLMs), Academic Research, Natural Language Processing, Automation, Technology Complexity vs Empirical Score Math Complexity: 1.0/10 Empirical Rigor: 2.0/10 Quadrant: Philosophers Why: The paper focuses on the conceptual process of using LLMs to generate academic papers, rather than presenting complex mathematical models or empirical backtesting results. flowchart TD A["Research Goal<br>Automate Academic Paper Generation"] --> B{"Methodology"} B --> C["Data/Input<br>LLM & Financial Datasets"] B --> D["Data/Input<br>Research Questions"] C --> E["Computational Process<br>LLM Content Generation"] D --> E E --> F["Key Findings<br>Successful Paper Automation"] E --> G["Key Findings<br>Validated Methodology"]