false

Exploratory Mean-Variance with Jumps: An Equilibrium Approach

Exploratory Mean-Variance with Jumps: An Equilibrium Approach ArXiv ID: 2512.09224 “View on arXiv” Authors: Yuling Max Chen, Bin Li, David Saunders Abstract Revisiting the continuous-time Mean-Variance (MV) Portfolio Optimization problem, we model the market dynamics with a jump-diffusion process and apply Reinforcement Learning (RL) techniques to facilitate informed exploration within the control space. We recognize the time-inconsistency of the MV problem and adopt the time-inconsistent control (TIC) approach to analytically solve for an exploratory equilibrium investment policy, which is a Gaussian distribution centered on the equilibrium control of the classical MV problem. Our approach accounts for time-inconsistent preferences and actions, and our equilibrium policy is the best option an investor can take at any given time during the investment period. Moreover, we leverage the martingale properties of the equilibrium policy, design a RL model, and propose an Actor-Critic RL algorithm. All of our RL model parameters converge to the corresponding true values in a simulation study. Our numerical study on 24 years of real market data shows that the proposed RL model is profitable in 13 out of 14 tests, demonstrating its practical applicability in real world investment. ...

December 10, 2025 · 2 min · Research Team

Commodities Trading through Deep Policy Gradient Methods

Commodities Trading through Deep Policy Gradient Methods ArXiv ID: 2309.00630 “View on arXiv” Authors: Unknown Abstract Algorithmic trading has gained attention due to its potential for generating superior returns. This paper investigates the effectiveness of deep reinforcement learning (DRL) methods in algorithmic commodities trading. It formulates the commodities trading problem as a continuous, discrete-time stochastic dynamical system. The proposed system employs a novel time-discretization scheme that adapts to market volatility, enhancing the statistical properties of subsampled financial time series. To optimize transaction-cost- and risk-sensitive trading agents, two policy gradient algorithms, namely actor-based and actor-critic-based approaches, are introduced. These agents utilize CNNs and LSTMs as parametric function approximators to map historical price observations to market positions.Backtesting on front-month natural gas futures demonstrates that DRL models increase the Sharpe ratio by $83%$ compared to the buy-and-hold baseline. Additionally, the risk profile of the agents can be customized through a hyperparameter that regulates risk sensitivity in the reward function during the optimization process. The actor-based models outperform the actor-critic-based models, while the CNN-based models show a slight performance advantage over the LSTM-based models. ...

August 10, 2023 · 2 min · Research Team

Risk Budgeting Allocation for Dynamic Risk Measures

Risk Budgeting Allocation for Dynamic Risk Measures ArXiv ID: 2305.11319 “View on arXiv” Authors: Unknown Abstract We define and develop an approach for risk budgeting allocation - a risk diversification portfolio strategy - where risk is measured using a dynamic time-consistent risk measure. For this, we introduce a notion of dynamic risk contributions that generalise the classical Euler contributions and which allow us to obtain dynamic risk contributions in a recursive manner. We prove that, for the class of coherent dynamic distortion risk measures, the risk allocation problem may be recast as a sequence of strictly convex optimisation problems. Moreover, we show that self-financing dynamic risk budgeting strategies with initial wealth of 1 are scaled versions of the solution of the sequence of convex optimisation problems. Furthermore, we develop an actor-critic approach, leveraging the elicitability of dynamic risk measures, to solve for risk budgeting strategies using deep learning. ...

May 18, 2023 · 2 min · Research Team