false

Adaptive Market Intelligence: A Mixture of Experts Framework for Volatility-Sensitive Stock Forecasting

Adaptive Market Intelligence: A Mixture of Experts Framework for Volatility-Sensitive Stock Forecasting ArXiv ID: 2508.02686 “View on arXiv” Authors: Diego Vallarino Abstract This study develops and empirically validates a Mixture of Experts (MoE) framework for stock price prediction across heterogeneous volatility regimes using real market data. The proposed model combines a Recurrent Neural Network (RNN) optimized for high-volatility stocks with a linear regression model tailored to stable equities. A volatility-aware gating mechanism dynamically weights the contributions of each expert based on asset classification. Using a dataset of 30 publicly traded U.S. stocks spanning diverse sectors, the MoE approach consistently outperforms both standalone models. Specifically, it achieves up to 33% improvement in MSE for volatile assets and 28% for stable assets relative to their respective baselines. Stratified evaluation across volatility classes demonstrates the model’s ability to adapt complexity to underlying market dynamics. These results confirm that no single model suffices across market regimes and highlight the advantage of adaptive architectures in financial prediction. Future work should explore real-time gate learning, dynamic volatility segmentation, and applications to portfolio optimization. ...

July 22, 2025 · 2 min · Research Team

HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and Regime-Switch VAE

HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and Regime-Switch VAE ArXiv ID: 2306.02848 “View on arXiv” Authors: Unknown Abstract Factor model is a fundamental investment tool in quantitative investment, which can be empowered by deep learning to become more flexible and efficient in practical complicated investing situations. However, it is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting, where the model can adapt itself to match the current market regime identified based on only point-in-time market information. To tackle this problem, we propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the underlying relationship between the market situation and stock-wise latent factors, so that HireVAE can effectively estimate useful latent factors given only historical market information and subsequently predict accurate stock returns. Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods, verifying the potential of such online and adaptive factor model. ...

June 5, 2023 · 2 min · Research Team