false

LLM Agents Do Not Replicate Human Market Traders: Evidence From Experimental Finance

LLM Agents Do Not Replicate Human Market Traders: Evidence From Experimental Finance ArXiv ID: 2502.15800 “View on arXiv” Authors: Unknown Abstract This paper explores how Large Language Models (LLMs) behave in a classic experimental finance paradigm widely known for eliciting bubbles and crashes in human participants. We adapt an established trading design, where traders buy and sell a risky asset with a known fundamental value, and introduce several LLM-based agents, both in single-model markets (all traders are instances of the same LLM) and in mixed-model “battle royale” settings (multiple LLMs competing in the same market). Our findings reveal that LLMs generally exhibit a “textbook-rational” approach, pricing the asset near its fundamental value, and show only a muted tendency toward bubble formation. Further analyses indicate that LLM-based agents display less trading strategy variance in contrast to humans. Taken together, these results highlight the risk of relying on LLM-only data to replicate human-driven market phenomena, as key behavioral features, such as large emergent bubbles, were not robustly reproduced. While LLMs clearly possess the capacity for strategic decision-making, their relative consistency and rationality suggest that they do not accurately mimic human market dynamics. ...

February 18, 2025 · 2 min · Research Team

Optimal Investment under Mutual Strategy Influence among Agents

Optimal Investment under Mutual Strategy Influence among Agents ArXiv ID: 2501.14259 “View on arXiv” Authors: Unknown Abstract In financial markets, agents often mutually influence each other’s investment strategies and adjust their strategies to align with others. However, there is limited quantitative study of agents’ investment strategies in such scenarios. In this work, we formulate the optimal investment differential game problem to study the mutual influence among agents. We derive the analytical solutions for agents’ optimal strategies and propose a fast algorithm to find approximate solutions with low computational complexity. We theoretically analyze the impact of mutual influence on agents’ optimal strategies and terminal wealth. When the mutual influence is strong and approaches infinity, we show that agents’ optimal strategies converge to the asymptotic strategy. Furthermore, in general cases, we prove that agents’ optimal strategies are linear combinations of the asymptotic strategy and their rational strategies without others’ influence. We validate the performance of the fast algorithm and verify the correctness of our analysis using numerical experiments. This work is crucial to comprehend mutual influence among agents and design effective mechanisms to guide their strategies in financial markets. ...

January 24, 2025 · 2 min · Research Team

Decoding OTC Government Bond Market Liquidity: An ABM Model for Market Dynamics

Decoding OTC Government Bond Market Liquidity: An ABM Model for Market Dynamics ArXiv ID: 2501.16331 “View on arXiv” Authors: Unknown Abstract The over-the-counter (OTC) government bond markets are characterised by their bilateral trading structures, which pose unique challenges to understanding and ensuring market stability and liquidity. In this paper, we develop a bespoke ABM that simulates market-maker interactions within a stylised government bond market. The model focuses on the dynamics of liquidity and stability in the secondary trading of government bonds, particularly in concentrated markets like those found in Australia and the UK. Through this simulation, we test key hypotheses around improving market stability, focusing on the effects of agent diversity, business costs, and client base size. We demonstrate that greater agent diversity enhances market liquidity and that reducing the costs of market-making can improve overall market stability. The model offers insights into computational finance by simulating trading without price transparency, highlighting how micro-structural elements can affect macro-level market outcomes. This research contributes to the evolving field of computational finance by employing computational intelligence techniques to better understand the fundamental mechanics of government bond markets, providing actionable insights for both academics and practitioners. ...

December 15, 2024 · 2 min · Research Team

DEPLOYERS: An agent based modeling tool for multi country real world data

DEPLOYERS: An agent based modeling tool for multi country real world data ArXiv ID: 2409.04876 “View on arXiv” Authors: Unknown Abstract We present recent progress in the design and development of DEPLOYERS, an agent-based macroeconomics modeling (ABM) framework, capable to deploy and simulate a full economic system (individual workers, goods and services firms, government, central and private banks, financial market, external sectors) whose structure and activity analysis reproduce the desired calibration data, that can be, for example a Social Accounting Matrix (SAM) or a Supply-Use Table (SUT) or an Input-Output Table (IOT).Here we extend our previous work to a multi-country version and show an example using data from a 46-countries 64-sectors FIGARO Inter-Country IOT. The simulation of each country runs on a separate thread or CPU core to simulate the activity of one step (month, week, or day) and then interacts (updates imports, exports, transfer) with that country’s foreign partners, and proceeds to the next step. This interaction can be chosen to be aggregated (a single row and column IO account) or disaggregated (64 rows and columns) with each partner. A typical run simulates thousands of individuals and firms engaged in their monthly activity and then records the results, much like a survey of the country’s economic system. This data can then be subjected to, for example, an Input-Output analysis to find out the sources of observed stylized effects as a function of time in the detailed and realistic modeling environment that can be easily implemented in an ABM framework. ...

September 7, 2024 · 2 min · Research Team

Simulation of Social Media-Driven Bubble Formation in Financial Markets using an Agent-Based Model with Hierarchical Influence Network

Simulation of Social Media-Driven Bubble Formation in Financial Markets using an Agent-Based Model with Hierarchical Influence Network ArXiv ID: 2409.00742 “View on arXiv” Authors: Unknown Abstract We propose that a tree-like hierarchical structure represents a simple and effective way to model the emergent behaviour of financial markets, especially markets where there exists a pronounced intersection between social media influences and investor behaviour. To explore this hypothesis, we introduce an agent-based model of financial markets, where trading agents are embedded in a hierarchical network of communities, and communities influence the strategies and opinions of traders. Empirical analysis of the model shows that its behaviour conforms to several stylized facts observed in real financial markets; and the model is able to realistically simulate the effects that social media-driven phenomena, such as echo chambers and pump-and-dump schemes, have on financial markets. ...

September 1, 2024 · 2 min · Research Team

Large Language Model Agent in Financial Trading: A Survey

Large Language Model Agent in Financial Trading: A Survey ArXiv ID: 2408.06361 “View on arXiv” Authors: Unknown Abstract Trading is a highly competitive task that requires a combination of strategy, knowledge, and psychological fortitude. With the recent success of large language models(LLMs), it is appealing to apply the emerging intelligence of LLM agents in this competitive arena and understanding if they can outperform professional traders. In this survey, we provide a comprehensive review of the current research on using LLMs as agents in financial trading. We summarize the common architecture used in the agent, the data inputs, and the performance of LLM trading agents in backtesting as well as the challenges presented in these research. This survey aims to provide insights into the current state of LLM-based financial trading agents and outline future research directions in this field. ...

July 26, 2024 · 2 min · Research Team

A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges

A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges ArXiv ID: 2406.11903 “View on arXiv” Authors: Unknown Abstract Recent advances in large language models (LLMs) have unlocked novel opportunities for machine learning applications in the financial domain. These models have demonstrated remarkable capabilities in understanding context, processing vast amounts of data, and generating human-preferred contents. In this survey, we explore the application of LLMs on various financial tasks, focusing on their potential to transform traditional practices and drive innovation. We provide a discussion of the progress and advantages of LLMs in financial contexts, analyzing their advanced technologies as well as prospective capabilities in contextual understanding, transfer learning flexibility, complex emotion detection, etc. We then highlight this survey for categorizing the existing literature into key application areas, including linguistic tasks, sentiment analysis, financial time series, financial reasoning, agent-based modeling, and other applications. For each application area, we delve into specific methodologies, such as textual analysis, knowledge-based analysis, forecasting, data augmentation, planning, decision support, and simulations. Furthermore, a comprehensive collection of datasets, model assets, and useful codes associated with mainstream applications are presented as resources for the researchers and practitioners. Finally, we outline the challenges and opportunities for future research, particularly emphasizing a number of distinctive aspects in this field. We hope our work can help facilitate the adoption and further development of LLMs in the financial sector. ...

June 15, 2024 · 2 min · Research Team

DeTEcT: Dynamic and Probabilistic Parameters Extension

DeTEcT: Dynamic and Probabilistic Parameters Extension ArXiv ID: 2405.16688 “View on arXiv” Authors: Unknown Abstract This paper presents a theoretical extension of the DeTEcT framework proposed by Sadykhov et al., DeTEcT, where a formal analysis framework was introduced for modelling wealth distribution in token economies. DeTEcT is a framework for analysing economic activity, simulating macroeconomic scenarios, and algorithmically setting policies in token economies. This paper proposes four ways of parametrizing the framework, where dynamic vs static parametrization is considered along with the probabilistic vs non-probabilistic. Using these parametrization techniques, we demonstrate that by adding restrictions to the framework it is possible to derive the existing wealth distribution models from DeTEcT. In addition to exploring parametrization techniques, this paper studies how money supply in DeTEcT framework can be transformed to become dynamic, and how this change will affect the dynamics of wealth distribution. The motivation for studying dynamic money supply is that it enables DeTEcT to be applied to modelling token economies without maximum supply (i.e., Ethereum), and it adds constraints to the framework in the form of symmetries. ...

May 26, 2024 · 2 min · Research Team

Modelling Opaque Bilateral Market Dynamics in Financial Trading: Insights from a Multi-Agent Simulation Study

Modelling Opaque Bilateral Market Dynamics in Financial Trading: Insights from a Multi-Agent Simulation Study ArXiv ID: 2405.02849 “View on arXiv” Authors: Unknown Abstract Exploring complex adaptive financial trading environments through multi-agent based simulation methods presents an innovative approach within the realm of quantitative finance. Despite the dominance of multi-agent reinforcement learning approaches in financial markets with observable data, there exists a set of systematically significant financial markets that pose challenges due to their partial or obscured data availability. We, therefore, devise a multi-agent simulation approach employing small-scale meta-heuristic methods. This approach aims to represent the opaque bilateral market for Australian government bond trading, capturing the bilateral nature of bank-to-bank trading, also referred to as “over-the-counter” (OTC) trading, and commonly occurring between “market makers”. The uniqueness of the bilateral market, characterized by negotiated transactions and a limited number of agents, yields valuable insights for agent-based modelling and quantitative finance. The inherent rigidity of this market structure, which is at odds with the global proliferation of multilateral platforms and the decentralization of finance, underscores the unique insights offered by our agent-based model. We explore the implications of market rigidity on market structure and consider the element of stability, in market design. This extends the ongoing discourse on complex financial trading environments, providing an enhanced understanding of their dynamics and implications. ...

May 5, 2024 · 2 min · Research Team

Modelling crypto markets by multi-agent reinforcement learning

Modelling crypto markets by multi-agent reinforcement learning ArXiv ID: 2402.10803 “View on arXiv” Authors: Unknown Abstract Building on a previous foundation work (Lussange et al. 2020), this study introduces a multi-agent reinforcement learning (MARL) model simulating crypto markets, which is calibrated to the Binance’s daily closing prices of $153$ cryptocurrencies that were continuously traded between 2018 and 2022. Unlike previous agent-based models (ABM) or multi-agent systems (MAS) which relied on zero-intelligence agents or single autonomous agent methodologies, our approach relies on endowing agents with reinforcement learning (RL) techniques in order to model crypto markets. This integration is designed to emulate, with a bottom-up approach to complexity inference, both individual and collective agents, ensuring robustness in the recent volatile conditions of such markets and during the COVID-19 era. A key feature of our model also lies in the fact that its autonomous agents perform asset price valuation based on two sources of information: the market prices themselves, and the approximation of the crypto assets fundamental values beyond what those market prices are. Our MAS calibration against real market data allows for an accurate emulation of crypto markets microstructure and probing key market behaviors, in both the bearish and bullish regimes of that particular time period. ...

February 16, 2024 · 2 min · Research Team