false

Strategic Collusion of LLM Agents: Market Division in Multi-Commodity Competitions

Strategic Collusion of LLM Agents: Market Division in Multi-Commodity Competitions ArXiv ID: 2410.00031 “View on arXiv” Authors: Unknown Abstract Machine-learning technologies are seeing increased deployment in real-world market scenarios. In this work, we explore the strategic behaviors of large language models (LLMs) when deployed as autonomous agents in multi-commodity markets, specifically within Cournot competition frameworks. We examine whether LLMs can independently engage in anti-competitive practices such as collusion or, more specifically, market division. Our findings demonstrate that LLMs can effectively monopolize specific commodities by dynamically adjusting their pricing and resource allocation strategies, thereby maximizing profitability without direct human input or explicit collusion commands. These results pose unique challenges and opportunities for businesses looking to integrate AI into strategic roles and for regulatory bodies tasked with maintaining fair and competitive markets. The study provides a foundation for further exploration into the ramifications of deferring high-stakes decisions to LLM-based agents. ...

September 19, 2024 · 2 min · Research Team

Can a GPT4-Powered AI Agent Be a Good Enough Performance Attribution Analyst?

Can a GPT4-Powered AI Agent Be a Good Enough Performance Attribution Analyst? ArXiv ID: 2403.10482 “View on arXiv” Authors: Unknown Abstract Performance attribution analysis, defined as the process of explaining the drivers of the excess performance of an investment portfolio against a benchmark, stands as a significant feature of portfolio management and plays a crucial role in the investment decision-making process, particularly within the fund management industry. Rooted in a solid financial and mathematical framework, the importance and methodologies of this analytical technique are extensively documented across numerous academic research papers and books. The integration of large language models (LLMs) and AI agents marks a groundbreaking development in this field. These agents are designed to automate and enhance the performance attribution analysis by accurately calculating and analyzing portfolio performances against benchmarks. In this study, we introduce the application of an AI Agent for a variety of essential performance attribution tasks, including the analysis of performance drivers and utilizing LLMs as calculation engine for multi-level attribution analysis and question-answering (QA) tasks. Leveraging advanced prompt engineering techniques such as Chain-of-Thought (CoT) and Plan and Solve (PS), and employing a standard agent framework from LangChain, the research achieves promising results: it achieves accuracy rates exceeding 93% in analyzing performance drivers, attains 100% in multi-level attribution calculations, and surpasses 84% accuracy in QA exercises that simulate official examination standards. These findings affirm the impactful role of AI agents, prompt engineering and evaluation in advancing portfolio management processes, highlighting a significant development in the practical application and evaluation of Generative AI technologies within the domain. ...

March 15, 2024 · 2 min · Research Team