false

Value of Information in the Mean-Square Case and its Application to the Analysis of Financial Time-Series Forecast

Value of Information in the Mean-Square Case and its Application to the Analysis of Financial Time-Series Forecast ArXiv ID: 2410.01831 “View on arXiv” Authors: Unknown Abstract The advances and development of various machine learning techniques has lead to practical solutions in various areas of science, engineering, medicine and finance. The great choice of algorithms, their implementations and libraries has resulted in another challenge of selecting the right algorithm and tuning their parameters in order to achieve optimal or satisfactory performance in specific applications. Here we show how the value of information (V(I)) can be used in this task to guide the algorithm choice and parameter tuning process. After estimating the amount of Shannon’s mutual information between the predictor and response variables, V(I) can define theoretical upper bound of performance of any algorithm. The inverse function I(V) defines the lower frontier of the minimum amount of information required to achieve the desired performance. In this paper, we illustrate the value of information for the mean-square error minimization and apply it to forecasts of cryptocurrency log-returns. ...

September 17, 2024 · 2 min · Research Team

Making forecasting self-learning and adaptive -- Pilot forecasting rack

Making forecasting self-learning and adaptive – Pilot forecasting rack ArXiv ID: 2306.07305 “View on arXiv” Authors: Unknown Abstract Retail sales and price projections are typically based on time series forecasting. For some product categories, the accuracy of demand forecasts achieved is low, negatively impacting inventory, transport, and replenishment planning. This paper presents our findings based on a proactive pilot exercise to explore ways to help retailers to improve forecast accuracy for such product categories. We evaluated opportunities for algorithmic interventions to improve forecast accuracy based on a sample product category, Knitwear. The Knitwear product category has a current demand forecast accuracy from non-AI models in the range of 60%. We explored how to improve the forecast accuracy using a rack approach. To generate forecasts, our decision model dynamically selects the best algorithm from an algorithm rack based on performance for a given state and context. Outcomes from our AI/ML forecasting model built using advanced feature engineering show an increase in the accuracy of demand forecast for Knitwear product category by 20%, taking the overall accuracy to 80%. Because our rack comprises algorithms that cater to a range of customer data sets, the forecasting model can be easily tailored for specific customer contexts. ...

June 12, 2023 · 2 min · Research Team