false

Neuro-Symbolic Traders: Assessing the Wisdom of AI Crowds in Markets

Neuro-Symbolic Traders: Assessing the Wisdom of AI Crowds in Markets ArXiv ID: 2410.14587 “View on arXiv” Authors: Unknown Abstract Deep generative models are becoming increasingly used as tools for financial analysis. However, it is unclear how these models will influence financial markets, especially when they infer financial value in a semi-autonomous way. In this work, we explore the interplay between deep generative models and market dynamics. We develop a form of virtual traders that use deep generative models to make buy/sell decisions, which we term neuro-symbolic traders, and expose them to a virtual market. Under our framework, neuro-symbolic traders are agents that use vision-language models to discover a model of the fundamental value of an asset. Agents develop this model as a stochastic differential equation, calibrated to market data using gradient descent. We test our neuro-symbolic traders on both synthetic data and real financial time series, including an equity stock, commodity, and a foreign exchange pair. We then expose several groups of neuro-symbolic traders to a virtual market environment. This market environment allows for feedback between the traders belief of the underlying value to the observed price dynamics. We find that this leads to price suppression compared to the historical data, highlighting a future risk to market stability. Our work is a first step towards quantifying the effect of deep generative agents on markets dynamics and sets out some of the potential risks and benefits of this approach in the future. ...

October 18, 2024 · 2 min · Research Team

Trading through Earnings Seasons using Self-Supervised Contrastive Representation Learning

Trading through Earnings Seasons using Self-Supervised Contrastive Representation Learning ArXiv ID: 2409.17392 “View on arXiv” Authors: Unknown Abstract Earnings release is a key economic event in the financial markets and crucial for predicting stock movements. Earnings data gives a glimpse into how a company is doing financially and can hint at where its stock might go next. However, the irregularity of its release cycle makes it a challenge to incorporate this data in a medium-frequency algorithmic trading model and the usefulness of this data fades fast after it is released, making it tough for models to stay accurate over time. Addressing this challenge, we introduce the Contrastive Earnings Transformer (CET) model, a self-supervised learning approach rooted in Contrastive Predictive Coding (CPC), aiming to optimise the utilisation of earnings data. To ascertain its effectiveness, we conduct a comparative study of CET against benchmark models across diverse sectors. Our research delves deep into the intricacies of stock data, evaluating how various models, and notably CET, handle the rapidly changing relevance of earnings data over time and over different sectors. The research outcomes shed light on CET’s distinct advantage in extrapolating the inherent value of earnings data over time. Its foundation on CPC allows for a nuanced understanding, facilitating consistent stock predictions even as the earnings data ages. This finding about CET presents a fresh approach to better use earnings data in algorithmic trading for predicting stock price trends. ...

September 25, 2024 · 2 min · Research Team

LSR-IGRU: Stock Trend Prediction Based on Long Short-Term Relationships and Improved GRU

LSR-IGRU: Stock Trend Prediction Based on Long Short-Term Relationships and Improved GRU ArXiv ID: 2409.08282 “View on arXiv” Authors: Unknown Abstract Stock price prediction is a challenging problem in the field of finance and receives widespread attention. In recent years, with the rapid development of technologies such as deep learning and graph neural networks, more research methods have begun to focus on exploring the interrelationships between stocks. However, existing methods mostly focus on the short-term dynamic relationships of stocks and directly integrating relationship information with temporal information. They often overlook the complex nonlinear dynamic characteristics and potential higher-order interaction relationships among stocks in the stock market. Therefore, we propose a stock price trend prediction model named LSR-IGRU in this paper, which is based on long short-term stock relationships and an improved GRU input. Firstly, we construct a long short-term relationship matrix between stocks, where secondary industry information is employed for the first time to capture long-term relationships of stocks, and overnight price information is utilized to establish short-term relationships. Next, we improve the inputs of the GRU model at each step, enabling the model to more effectively integrate temporal information and long short-term relationship information, thereby significantly improving the accuracy of predicting stock trend changes. Finally, through extensive experiments on multiple datasets from stock markets in China and the United States, we validate the superiority of the proposed LSR-IGRU model over the current state-of-the-art baseline models. We also apply the proposed model to the algorithmic trading system of a financial company, achieving significantly higher cumulative portfolio returns compared to other baseline methods. Our sources are released at https://github.com/ZP1481616577/Baselines_LSR-IGRU. ...

August 26, 2024 · 2 min · Research Team

Less is more: AI Decision-Making using Dynamic Deep Neural Networks for Short-Term Stock Index Prediction

Less is more: AI Decision-Making using Dynamic Deep Neural Networks for Short-Term Stock Index Prediction ArXiv ID: 2408.11740 “View on arXiv” Authors: Unknown Abstract In this paper we introduce a multi-agent deep-learning method which trades in the Futures markets based on the US S&P 500 index. The method (referred to as Model A) is an innovation founded on existing well-established machine-learning models which sample market prices and associated derivatives in order to decide whether the investment should be long/short or closed (zero exposure), on a day-to-day decision. We compare the predictions with some conventional machine-learning methods namely, Long Short-Term Memory, Random Forest and Gradient-Boosted-Trees. Results are benchmarked against a passive model in which the Futures contracts are held (long) continuously with the same exposure (level of investment). Historical tests are based on daily daytime trading carried out over a period of 6 calendar years (2018-23). We find that Model A outperforms the passive investment in key performance metrics, placing it within the top quartile performance of US Large Cap active fund managers. Model A also outperforms the three machine-learning classification comparators over this period. We observe that Model A is extremely efficient (doing less and getting more) with an exposure to the market of only 41.95% compared to the 100% market exposure of the passive investment, and thus provides increased profitability with reduced risk. ...

August 21, 2024 · 2 min · Research Team

Large Language Model Agent in Financial Trading: A Survey

Large Language Model Agent in Financial Trading: A Survey ArXiv ID: 2408.06361 “View on arXiv” Authors: Unknown Abstract Trading is a highly competitive task that requires a combination of strategy, knowledge, and psychological fortitude. With the recent success of large language models(LLMs), it is appealing to apply the emerging intelligence of LLM agents in this competitive arena and understanding if they can outperform professional traders. In this survey, we provide a comprehensive review of the current research on using LLMs as agents in financial trading. We summarize the common architecture used in the agent, the data inputs, and the performance of LLM trading agents in backtesting as well as the challenges presented in these research. This survey aims to provide insights into the current state of LLM-based financial trading agents and outline future research directions in this field. ...

July 26, 2024 · 2 min · Research Team

Financial Statement Analysis with Large Language Models

Financial Statement Analysis with Large Language Models ArXiv ID: 2407.17866 “View on arXiv” Authors: Unknown Abstract We investigate whether large language models (LLMs) can successfully perform financial statement analysis in a way similar to a professional human analyst. We provide standardized and anonymous financial statements to GPT4 and instruct the model to analyze them to determine the direction of firms’ future earnings. Even without narrative or industry-specific information, the LLM outperforms financial analysts in its ability to predict earnings changes directionally. The LLM exhibits a relative advantage over human analysts in situations when the analysts tend to struggle. Furthermore, we find that the prediction accuracy of the LLM is on par with a narrowly trained state-of-the-art ML model. LLM prediction does not stem from its training memory. Instead, we find that the LLM generates useful narrative insights about a company’s future performance. Lastly, our trading strategies based on GPT’s predictions yield a higher Sharpe ratio and alphas than strategies based on other models. Our results suggest that LLMs may take a central role in analysis and decision-making. ...

July 25, 2024 · 2 min · Research Team

When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments

When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments ArXiv ID: 2407.18957 “View on arXiv” Authors: Unknown Abstract Can AI Agents simulate real-world trading environments to investigate the impact of external factors on stock trading activities (e.g., macroeconomics, policy changes, company fundamentals, and global events)? These factors, which frequently influence trading behaviors, are critical elements in the quest for maximizing investors’ profits. Our work attempts to solve this problem through large language model based agents. We have developed a multi-agent AI system called StockAgent, driven by LLMs, designed to simulate investors’ trading behaviors in response to the real stock market. The StockAgent allows users to evaluate the impact of different external factors on investor trading and to analyze trading behavior and profitability effects. Additionally, StockAgent avoids the test set leakage issue present in existing trading simulation systems based on AI Agents. Specifically, it prevents the model from leveraging prior knowledge it may have acquired related to the test data. We evaluate different LLMs under the framework of StockAgent in a stock trading environment that closely resembles real-world conditions. The experimental results demonstrate the impact of key external factors on stock market trading, including trading behavior and stock price fluctuation rules. This research explores the study of agents’ free trading gaps in the context of no prior knowledge related to market data. The patterns identified through StockAgent simulations provide valuable insights for LLM-based investment advice and stock recommendation. The code is available at https://github.com/MingyuJ666/Stockagent. ...

July 15, 2024 · 2 min · Research Team

A Comprehensive Analysis of Machine Learning Models for Algorithmic Trading of Bitcoin

A Comprehensive Analysis of Machine Learning Models for Algorithmic Trading of Bitcoin ArXiv ID: 2407.18334 “View on arXiv” Authors: Unknown Abstract This study evaluates the performance of 41 machine learning models, including 21 classifiers and 20 regressors, in predicting Bitcoin prices for algorithmic trading. By examining these models under various market conditions, we highlight their accuracy, robustness, and adaptability to the volatile cryptocurrency market. Our comprehensive analysis reveals the strengths and limitations of each model, providing critical insights for developing effective trading strategies. We employ both machine learning metrics (e.g., Mean Absolute Error, Root Mean Squared Error) and trading metrics (e.g., Profit and Loss percentage, Sharpe Ratio) to assess model performance. Our evaluation includes backtesting on historical data, forward testing on recent unseen data, and real-world trading scenarios, ensuring the robustness and practical applicability of our models. Key findings demonstrate that certain models, such as Random Forest and Stochastic Gradient Descent, outperform others in terms of profit and risk management. These insights offer valuable guidance for traders and researchers aiming to leverage machine learning for cryptocurrency trading. ...

July 9, 2024 · 2 min · Research Team

LSTM-ARIMA as a Hybrid Approach in Algorithmic Investment Strategies

LSTM-ARIMA as a Hybrid Approach in Algorithmic Investment Strategies ArXiv ID: 2406.18206 “View on arXiv” Authors: Unknown Abstract This study focuses on building an algorithmic investment strategy employing a hybrid approach that combines LSTM and ARIMA models referred to as LSTM-ARIMA. This unique algorithm uses LSTM to produce final predictions but boosts the results of this RNN by adding the residuals obtained from ARIMA predictions among other inputs. The algorithm is tested across three equity indices (S&P 500, FTSE 100, and CAC 40) using daily frequency data from January 2000 to August 2023. The testing architecture is based on the walk-forward procedure for the hyperparameter tunning phase that uses Random Search and backtesting the algorithms. The selection of the optimal model is determined based on adequately selected performance metrics focused on risk-adjusted return measures. We considered two strategies for each algorithm: Long-Only and Long-Short to present the situation of two various groups of investors with different investment policy restrictions. For each strategy and equity index, we compute the performance metrics and visualize the equity curve to identify the best strategy with the highest modified information ratio. The findings conclude that the LSTM-ARIMA algorithm outperforms all the other algorithms across all the equity indices which confirms the strong potential behind hybrid ML-TS (machine learning - time series) models in searching for the optimal algorithmic investment strategies. ...

June 26, 2024 · 2 min · Research Team

MOT: A Mixture of Actors Reinforcement Learning Method by Optimal Transport for Algorithmic Trading

MOT: A Mixture of Actors Reinforcement Learning Method by Optimal Transport for Algorithmic Trading ArXiv ID: 2407.01577 “View on arXiv” Authors: Unknown Abstract Algorithmic trading refers to executing buy and sell orders for specific assets based on automatically identified trading opportunities. Strategies based on reinforcement learning (RL) have demonstrated remarkable capabilities in addressing algorithmic trading problems. However, the trading patterns differ among market conditions due to shifted distribution data. Ignoring multiple patterns in the data will undermine the performance of RL. In this paper, we propose MOT,which designs multiple actors with disentangled representation learning to model the different patterns of the market. Furthermore, we incorporate the Optimal Transport (OT) algorithm to allocate samples to the appropriate actor by introducing a regularization loss term. Additionally, we propose Pretrain Module to facilitate imitation learning by aligning the outputs of actors with expert strategy and better balance the exploration and exploitation of RL. Experimental results on real futures market data demonstrate that MOT exhibits excellent profit capabilities while balancing risks. Ablation studies validate the effectiveness of the components of MOT. ...

June 3, 2024 · 2 min · Research Team