false

Combating Financial Crimes with Unsupervised Learning Techniques: Clustering and Dimensionality Reduction for Anti-Money Laundering

Combating Financial Crimes with Unsupervised Learning Techniques: Clustering and Dimensionality Reduction for Anti-Money Laundering ArXiv ID: 2403.00777 “View on arXiv” Authors: Unknown Abstract Anti-Money Laundering (AML) is a crucial task in ensuring the integrity of financial systems. One keychallenge in AML is identifying high-risk groups based on their behavior. Unsupervised learning, particularly clustering, is a promising solution for this task. However, the use of hundreds of features todescribe behavior results in a highdimensional dataset that negatively impacts clustering performance.In this paper, we investigate the effectiveness of combining clustering method agglomerative hierarchicalclustering with four dimensionality reduction techniques -Independent Component Analysis (ICA), andKernel Principal Component Analysis (KPCA), Singular Value Decomposition (SVD), Locality Preserving Projections (LPP)- to overcome the issue of high-dimensionality in AML data and improve clusteringresults. This study aims to provide insights into the most effective way of reducing the dimensionality ofAML data and enhance the accuracy of clustering-based AML systems. The experimental results demonstrate that KPCA outperforms other dimension reduction techniques when combined with agglomerativehierarchical clustering. This superiority is observed in the majority of situations, as confirmed by threedistinct validation indices. ...

February 14, 2024 · 2 min · Research Team

Realistic Synthetic Financial Transactions for Anti-Money Laundering Models

Realistic Synthetic Financial Transactions for Anti-Money Laundering Models ArXiv ID: 2306.16424 “View on arXiv” Authors: Unknown Abstract With the widespread digitization of finance and the increasing popularity of cryptocurrencies, the sophistication of fraud schemes devised by cybercriminals is growing. Money laundering – the movement of illicit funds to conceal their origins – can cross bank and national boundaries, producing complex transaction patterns. The UN estimates 2-5% of global GDP or $0.8 - $2.0 trillion dollars are laundered globally each year. Unfortunately, real data to train machine learning models to detect laundering is generally not available, and previous synthetic data generators have had significant shortcomings. A realistic, standardized, publicly-available benchmark is needed for comparing models and for the advancement of the area. To this end, this paper contributes a synthetic financial transaction dataset generator and a set of synthetically generated AML (Anti-Money Laundering) datasets. We have calibrated this agent-based generator to match real transactions as closely as possible and made the datasets public. We describe the generator in detail and demonstrate how the datasets generated can help compare different machine learning models in terms of their AML abilities. In a key way, using synthetic data in these comparisons can be even better than using real data: the ground truth labels are complete, whilst many laundering transactions in real data are never detected. ...

June 22, 2023 · 2 min · Research Team