false

Local and Global Balance in Financial Correlation Networks: an Application to Investment Decisions

Local and Global Balance in Financial Correlation Networks: an Application to Investment Decisions ArXiv ID: 2512.10606 “View on arXiv” Authors: Paolo Bartesaghi, Rosanna Grassi, Pierpaolo Uberti Abstract The global balance is a well-known indicator of the behavior of a signed network. Recent literature has introduced the concept of local balance as a measure of the contribution of a single node to the overall balance of the network. In the present research, we investigate the potential of using deviations of local balance from global balance as a criterion for selecting outperforming assets. The underlying idea is that, during financial crises, most assets in the investment universe behave similarly: losses are severe and widespread, and the global balance of the correlation-based signed network reaches its maximum value. Under such circumstances, standard diversification (mainly related to portfolio size) is unable to reduce risk or limit losses. Therefore, it may be useful to concentrate portfolio exposures on the few assets - if such assets exist-that behave differently from the rest of the market. We argue that these assets are those for which the local balance strongly departs from the global balance of the underlying signed network. The paper supports this hypothesis through an application using real financial data. The results, in both descriptive and predictive contexts, confirm the proposed intuition. ...

December 11, 2025 · 2 min · Research Team

Signed network models for portfolio optimization

Signed network models for portfolio optimization ArXiv ID: 2510.05377 “View on arXiv” Authors: Bibhas Adhikari Abstract In this work, we consider weighted signed network representations of financial markets derived from raw or denoised correlation matrices, and examine how negative edges can be exploited to reduce portfolio risk. We then propose a discrete optimization scheme that reduces the asset selection problem to a desired size by building a time series of signed networks based on asset returns. To benchmark our approach, we consider two standard allocation strategies: Markowitz’s mean-variance optimization and the 1/N equally weighted portfolio. Both methods are applied on the reduced universe as well as on the full universe, using two datasets: (i) the Market Champions dataset, consisting of 21 major S&P500 companies over the 2020-2024 period, and (ii) a dataset of 199 assets comprising all S&P500 constituents with stock prices available and aligned with Google’s data. Empirical results show that portfolios constructed via our signed network selection perform as good as those from classical Markowitz model and the equal-weight benchmark in most occasions. ...

October 6, 2025 · 2 min · Research Team

Multi-Hypothesis Prediction for Portfolio Optimization: A Structured Ensemble Learning Approach to Risk Diversification

Multi-Hypothesis Prediction for Portfolio Optimization: A Structured Ensemble Learning Approach to Risk Diversification ArXiv ID: 2501.03919 “View on arXiv” Authors: Unknown Abstract This work proposes a unified framework for portfolio allocation, covering both asset selection and optimization, based on a multiple-hypothesis predict-then-optimize approach. The portfolio is modeled as a structured ensemble, where each predictor corresponds to a specific asset or hypothesis. Structured ensembles formally link predictors’ diversity, captured via ensemble loss decomposition, to out-of-sample risk diversification. A structured data set of predictor output is constructed with a parametric diversity control, which influences both the training process and the diversification outcomes. This data set is used as input for a supervised ensemble model, the target portfolio of which must align with the ensemble combiner rule implied by the loss. For squared loss, the arithmetic mean applies, yielding the equal-weighted portfolio as the optimal target. For asset selection, a novel method is introduced which prioritizes assets from more diverse predictor sets, even at the expense of lower average predicted returns, through a diversity-quality trade-off. This form of diversity is applied before the portfolio optimization stage and is compatible with a wide range of allocation techniques. Experiments conducted on the full S&P 500 universe and a data set of 1.300 global bonds of various types over more than two decades validate the theoretical framework. Results show that both sources of diversity effectively extend the boundaries of achievable portfolio diversification, delivering strong performance across both one-step and multi-step allocation tasks. ...

January 7, 2025 · 2 min · Research Team

Recommender Systems in Financial Trading: Using machine-based conviction analysis in an explainable AI investment framework

Recommender Systems in Financial Trading: Using machine-based conviction analysis in an explainable AI investment framework ArXiv ID: 2404.11080 “View on arXiv” Authors: Unknown Abstract Traditionally, assets are selected for inclusion in a portfolio (long or short) by human analysts. Teams of human portfolio managers (PMs) seek to weigh and balance these securities using optimisation methods and other portfolio construction processes. Often, human PMs consider human analyst recommendations against the backdrop of the analyst’s recommendation track record and the applicability of the analyst to the recommendation they provide. Many firms regularly ask analysts to provide a “conviction” level on their recommendations. In the eyes of PMs, understanding a human analyst’s track record has typically come down to basic spread sheet tabulation or, at best, a “virtual portfolio” paper trading book to keep track of results of recommendations. Analysts’ conviction around their recommendations and their “paper trading” track record are two crucial workflow components between analysts and portfolio construction. Many human PMs may not even appreciate that they factor these data points into their decision-making logic. This chapter explores how Artificial Intelligence (AI) can be used to replicate these two steps and bridge the gap between AI data analytics and AI-based portfolio construction methods. This field of AI is referred to as Recommender Systems (RS). This chapter will further explore what metadata that RS systems functionally supply to downstream systems and their features. ...

April 17, 2024 · 2 min · Research Team