false

Decision-informed Neural Networks with Large Language Model Integration for Portfolio Optimization

Decision-informed Neural Networks with Large Language Model Integration for Portfolio Optimization ArXiv ID: 2502.00828 “View on arXiv” Authors: Unknown Abstract This paper addresses the critical disconnect between prediction and decision quality in portfolio optimization by integrating Large Language Models (LLMs) with decision-focused learning. We demonstrate both theoretically and empirically that minimizing the prediction error alone leads to suboptimal portfolio decisions. We aim to exploit the representational power of LLMs for investment decisions. An attention mechanism processes asset relationships, temporal dependencies, and macro variables, which are then directly integrated into a portfolio optimization layer. This enables the model to capture complex market dynamics and align predictions with the decision objectives. Extensive experiments on S&P100 and DOW30 datasets show that our model consistently outperforms state-of-the-art deep learning models. In addition, gradient-based analyses show that our model prioritizes the assets most crucial to decision making, thus mitigating the effects of prediction errors on portfolio performance. These findings underscore the value of integrating decision objectives into predictions for more robust and context-aware portfolio management. ...

February 2, 2025 · 2 min · Research Team

Transformer Based Time-Series Forecasting for Stock

Transformer Based Time-Series Forecasting for Stock ArXiv ID: 2502.09625 “View on arXiv” Authors: Unknown Abstract To the naked eye, stock prices are considered chaotic, dynamic, and unpredictable. Indeed, it is one of the most difficult forecasting tasks that hundreds of millions of retail traders and professional traders around the world try to do every second even before the market opens. With recent advances in the development of machine learning and the amount of data the market generated over years, applying machine learning techniques such as deep learning neural networks is unavoidable. In this work, we modeled the task as a multivariate forecasting problem, instead of a naive autoregression problem. The multivariate analysis is done using the attention mechanism via applying a mutated version of the Transformer, “Stockformer”, which we created. ...

January 29, 2025 · 2 min · Research Team

Leveraging Time Series Categorization and Temporal Fusion Transformers to Improve Cryptocurrency Price Forecasting

Leveraging Time Series Categorization and Temporal Fusion Transformers to Improve Cryptocurrency Price Forecasting ArXiv ID: 2412.14529 “View on arXiv” Authors: Unknown Abstract Organizing and managing cryptocurrency portfolios and decision-making on transactions is crucial in this market. Optimal selection of assets is one of the main challenges that requires accurate prediction of the price of cryptocurrencies. In this work, we categorize the financial time series into several similar subseries to increase prediction accuracy by learning each subseries category with similar behavior. For each category of the subseries, we create a deep learning model based on the attention mechanism to predict the next step of each subseries. Due to the limited amount of cryptocurrency data for training models, if the number of categories increases, the amount of training data for each model will decrease, and some complex models will not be trained well due to the large number of parameters. To overcome this challenge, we propose to combine the time series data of other cryptocurrencies to increase the amount of data for each category, hence increasing the accuracy of the models corresponding to each category. ...

December 19, 2024 · 2 min · Research Team

Enhanced Momentum with Momentum Transformers

Enhanced Momentum with Momentum Transformers ArXiv ID: 2412.12516 “View on arXiv” Authors: Unknown Abstract The primary objective of this research is to build a Momentum Transformer that is expected to outperform benchmark time-series momentum and mean-reversion trading strategies. We extend the ideas introduced in the paper Trading with the Momentum Transformer: An Intelligent and Interpretable Architecture to equities as the original paper primarily only builds upon futures and equity indices. Unlike conventional Long Short-Term Memory (LSTM) models, which operate sequentially and are optimized for processing local patterns, an attention mechanism equips our architecture with direct access to all prior time steps in the training window. This hybrid design, combining attention with an LSTM, enables the model to capture long-term dependencies, enhance performance in scenarios accounting for transaction costs, and seamlessly adapt to evolving market conditions, such as those witnessed during the Covid Pandemic. We average 4.14% returns which is similar to the original papers results. Our Sharpe is lower at an average of 1.12 due to much higher volatility which may be due to stocks being inherently more volatile than futures and indices. ...

December 17, 2024 · 2 min · Research Team

Higher Order Transformers: Enhancing Stock Movement Prediction On Multimodal Time-Series Data

Higher Order Transformers: Enhancing Stock Movement Prediction On Multimodal Time-Series Data ArXiv ID: 2412.10540 “View on arXiv” Authors: Unknown Abstract In this paper, we tackle the challenge of predicting stock movements in financial markets by introducing Higher Order Transformers, a novel architecture designed for processing multivariate time-series data. We extend the self-attention mechanism and the transformer architecture to a higher order, effectively capturing complex market dynamics across time and variables. To manage computational complexity, we propose a low-rank approximation of the potentially large attention tensor using tensor decomposition and employ kernel attention, reducing complexity to linear with respect to the data size. Additionally, we present an encoder-decoder model that integrates technical and fundamental analysis, utilizing multimodal signals from historical prices and related tweets. Our experiments on the Stocknet dataset demonstrate the effectiveness of our method, highlighting its potential for enhancing stock movement prediction in financial markets. ...

December 13, 2024 · 2 min · Research Team

Developing An Attention-Based Ensemble Learning Framework for Financial Portfolio Optimisation

Developing An Attention-Based Ensemble Learning Framework for Financial Portfolio Optimisation ArXiv ID: 2404.08935 “View on arXiv” Authors: Unknown Abstract In recent years, deep or reinforcement learning approaches have been applied to optimise investment portfolios through learning the spatial and temporal information under the dynamic financial market. Yet in most cases, the existing approaches may produce biased trading signals based on the conventional price data due to a lot of market noises, which possibly fails to balance the investment returns and risks. Accordingly, a multi-agent and self-adaptive portfolio optimisation framework integrated with attention mechanisms and time series, namely the MASAAT, is proposed in this work in which multiple trading agents are created to observe and analyse the price series and directional change data that recognises the significant changes of asset prices at different levels of granularity for enhancing the signal-to-noise ratio of price series. Afterwards, by reconstructing the tokens of financial data in a sequence, the attention-based cross-sectional analysis module and temporal analysis module of each agent can effectively capture the correlations between assets and the dependencies between time points. Besides, a portfolio generator is integrated into the proposed framework to fuse the spatial-temporal information and then summarise the portfolios suggested by all trading agents to produce a newly ensemble portfolio for reducing biased trading actions and balancing the overall returns and risks. The experimental results clearly demonstrate that the MASAAT framework achieves impressive enhancement when compared with many well-known portfolio optimsation approaches on three challenging data sets of DJIA, S&P 500 and CSI 300. More importantly, our proposal has potential strengths in many possible applications for future study. ...

April 13, 2024 · 2 min · Research Team

StockGPT: A GenAI Model for Stock Prediction and Trading

StockGPT: A GenAI Model for Stock Prediction and Trading ArXiv ID: 2404.05101 “View on arXiv” Authors: Unknown Abstract This paper introduces StockGPT, an autoregressive ``number’’ model trained and tested on 70 million daily U.S.\ stock returns over nearly 100 years. Treating each return series as a sequence of tokens, StockGPT automatically learns the hidden patterns predictive of future returns via its attention mechanism. On a held-out test sample from 2001 to 2023, daily and monthly rebalanced long-short portfolios formed from StockGPT predictions yield strong performance. The StockGPT-based portfolios span momentum and long-/short-term reversals, eliminating the need for manually crafted price-based strategies, and yield highly significant alphas against leading stock market factors, suggesting a novel AI pricing effect. This highlights the immense promise of generative AI in surpassing human in making complex financial investment decisions. ...

April 7, 2024 · 2 min · Research Team

An End-to-End Structure with Novel Position Mechanism and Improved EMD for Stock Forecasting

An End-to-End Structure with Novel Position Mechanism and Improved EMD for Stock Forecasting ArXiv ID: 2404.07969 “View on arXiv” Authors: Unknown Abstract As a branch of time series forecasting, stock movement forecasting is one of the challenging problems for investors and researchers. Since Transformer was introduced to analyze financial data, many researchers have dedicated themselves to forecasting stock movement using Transformer or attention mechanisms. However, existing research mostly focuses on individual stock information but ignores stock market information and high noise in stock data. In this paper, we propose a novel method using the attention mechanism in which both stock market information and individual stock information are considered. Meanwhile, we propose a novel EMD-based algorithm for reducing short-term noise in stock data. Two randomly selected exchange-traded funds (ETFs) spanning over ten years from US stock markets are used to demonstrate the superior performance of the proposed attention-based method. The experimental analysis demonstrates that the proposed attention-based method significantly outperforms other state-of-the-art baselines. Code is available at https://github.com/DurandalLee/ACEFormer. ...

March 25, 2024 · 2 min · Research Team

A Novel Decision Ensemble Framework: Customized Attention-BiLSTM and XGBoost for Speculative Stock Price Forecasting

A Novel Decision Ensemble Framework: Customized Attention-BiLSTM and XGBoost for Speculative Stock Price Forecasting ArXiv ID: 2401.11621 “View on arXiv” Authors: Unknown Abstract Forecasting speculative stock prices is essential for effective investment risk management that drives the need for the development of innovative algorithms. However, the speculative nature, volatility, and complex sequential dependencies within financial markets present inherent challenges which necessitate advanced techniques. This paper proposes a novel framework, CAB-XDE (customized attention BiLSTM-XGB decision ensemble), for predicting the daily closing price of speculative stock Bitcoin-USD (BTC-USD). CAB-XDE framework integrates a customized bi-directional long short-term memory (BiLSTM) with the attention mechanism and the XGBoost algorithm. The customized BiLSTM leverages its learning capabilities to capture the complex sequential dependencies and speculative market trends. Additionally, the new attention mechanism dynamically assigns weights to influential features, thereby enhancing interpretability, and optimizing effective cost measures and volatility forecasting. Moreover, XGBoost handles nonlinear relationships and contributes to the proposed CAB-XDE framework robustness. Additionally, the weight determination theory-error reciprocal method further refines predictions. This refinement is achieved by iteratively adjusting model weights. It is based on discrepancies between theoretical expectations and actual errors in individual customized attention BiLSTM and XGBoost models to enhance performance. Finally, the predictions from both XGBoost and customized attention BiLSTM models are concatenated to achieve diverse prediction space and are provided to the ensemble classifier to enhance the generalization capabilities of CAB-XDE. The proposed CAB-XDE framework is empirically validated on volatile Bitcoin market, sourced from Yahoo Finance and outperforms state-of-the-art models with a MAPE of 0.0037, MAE of 84.40, and RMSE of 106.14. ...

January 5, 2024 · 2 min · Research Team