false

AI-Trader: Benchmarking Autonomous Agents in Real-Time Financial Markets

AI-Trader: Benchmarking Autonomous Agents in Real-Time Financial Markets ArXiv ID: 2512.10971 “View on arXiv” Authors: Tianyu Fan, Yuhao Yang, Yangqin Jiang, Yifei Zhang, Yuxuan Chen, Chao Huang Abstract Large Language Models (LLMs) have demonstrated remarkable potential as autonomous agents, approaching human-expert performance through advanced reasoning and tool orchestration. However, decision-making in fully dynamic and live environments remains highly challenging, requiring real-time information integration and adaptive responses. While existing efforts have explored live evaluation mechanisms in structured tasks, a critical gap remains in systematic benchmarking for real-world applications, particularly in finance where stringent requirements exist for live strategic responsiveness. To address this gap, we introduce AI-Trader, the first fully-automated, live, and data-uncontaminated evaluation benchmark for LLM agents in financial decision-making. AI-Trader spans three major financial markets: U.S. stocks, A-shares, and cryptocurrencies, with multiple trading granularities to simulate live financial environments. Our benchmark implements a revolutionary fully autonomous minimal information paradigm where agents receive only essential context and must independently search, verify, and synthesize live market information without human intervention. We evaluate six mainstream LLMs across three markets and multiple trading frequencies. Our analysis reveals striking findings: general intelligence does not automatically translate to effective trading capability, with most agents exhibiting poor returns and weak risk management. We demonstrate that risk control capability determines cross-market robustness, and that AI trading strategies achieve excess returns more readily in highly liquid markets than policy-driven environments. These findings expose critical limitations in current autonomous agents and provide clear directions for future improvements. The code and evaluation data are open-sourced to foster community research: https://github.com/HKUDS/AI-Trader. ...

December 1, 2025 · 2 min · Research Team

AlphaX: An AI-Based Value Investing Strategy for the Brazilian Stock Market

AlphaX: An AI-Based Value Investing Strategy for the Brazilian Stock Market ArXiv ID: 2508.13429 “View on arXiv” Authors: Paulo André Lima de Castro Abstract Autonomous trading strategies have been a subject of research within the field of artificial intelligence (AI) for aconsiderable period. Various AI techniques have been explored to develop autonomous agents capable of trading financial assets. These approaches encompass traditional methods such as neural networks, fuzzy logic, and reinforcement learning, as well as more recent advancements, including deep neural networks and deep reinforcement learning. Many developers report success in creating strategies that exhibit strong performance during simulations using historical price data, a process commonly referred to as backtesting. However, when these strategies are deployed in real markets, their performance often deteriorates, particularly in terms of risk-adjusted returns. In this study, we propose an AI-based strategy inspired by a classical investment paradigm: Value Investing. Financial AI models are highly susceptible to lookahead bias and other forms of bias that can significantly inflate performance in backtesting compared to live trading conditions. To address this issue, we conducted a series of computational simulations while controlling for these biases, thereby reducing the risk of overfitting. Our results indicate that the proposed approach outperforms major Brazilian market benchmarks. Moreover, the strategy, named AlphaX, demonstrated superior performance relative to widely used technical indicators such as the Relative Strength Index (RSI) and Money Flow Index (MFI), with statistically significant results. Finally, we discuss several open challenges and highlight emerging technologies in qualitative analysis that may contribute to the development of a comprehensive AI-based Value Investing framework in the future ...

August 19, 2025 · 2 min · Research Team