false

Crisis Alpha: A High-Performance Trading Algorithm Tested in Market Downturns

Crisis Alpha: A High-Performance Trading Algorithm Tested in Market Downturns ArXiv ID: 2409.14510 “View on arXiv” Authors: Unknown Abstract Forming quantitative portfolios using statistical risk models presents a significant challenge for hedge funds and portfolio managers. This research investigates three distinct statistical risk models to construct quantitative portfolios of 1,000 floating stocks in the US market. Utilizing five different investment strategies, these models are tested across four periods, encompassing the last three major financial crises: The Dot Com Bubble, Global Financial Crisis, and Covid-19 market downturn. Backtests leverage the CRSP dataset from January 1990 through December 2023. The results demonstrate that the proposed models consistently outperformed market excess returns across all periods. These findings suggest that the developed risk models can serve as valuable tools for asset managers, aiding in strategic decision-making and risk management in various economic conditions. ...

August 18, 2024 · 2 min · Research Team

Large Language Model Agent in Financial Trading: A Survey

Large Language Model Agent in Financial Trading: A Survey ArXiv ID: 2408.06361 “View on arXiv” Authors: Unknown Abstract Trading is a highly competitive task that requires a combination of strategy, knowledge, and psychological fortitude. With the recent success of large language models(LLMs), it is appealing to apply the emerging intelligence of LLM agents in this competitive arena and understanding if they can outperform professional traders. In this survey, we provide a comprehensive review of the current research on using LLMs as agents in financial trading. We summarize the common architecture used in the agent, the data inputs, and the performance of LLM trading agents in backtesting as well as the challenges presented in these research. This survey aims to provide insights into the current state of LLM-based financial trading agents and outline future research directions in this field. ...

July 26, 2024 · 2 min · Research Team

A Comprehensive Analysis of Machine Learning Models for Algorithmic Trading of Bitcoin

A Comprehensive Analysis of Machine Learning Models for Algorithmic Trading of Bitcoin ArXiv ID: 2407.18334 “View on arXiv” Authors: Unknown Abstract This study evaluates the performance of 41 machine learning models, including 21 classifiers and 20 regressors, in predicting Bitcoin prices for algorithmic trading. By examining these models under various market conditions, we highlight their accuracy, robustness, and adaptability to the volatile cryptocurrency market. Our comprehensive analysis reveals the strengths and limitations of each model, providing critical insights for developing effective trading strategies. We employ both machine learning metrics (e.g., Mean Absolute Error, Root Mean Squared Error) and trading metrics (e.g., Profit and Loss percentage, Sharpe Ratio) to assess model performance. Our evaluation includes backtesting on historical data, forward testing on recent unseen data, and real-world trading scenarios, ensuring the robustness and practical applicability of our models. Key findings demonstrate that certain models, such as Random Forest and Stochastic Gradient Descent, outperform others in terms of profit and risk management. These insights offer valuable guidance for traders and researchers aiming to leverage machine learning for cryptocurrency trading. ...

July 9, 2024 · 2 min · Research Team

Unlocking Profit Potential: Maximizing Returns with Bayesian Optimization of Supertrend Indicator Parameters

Unlocking Profit Potential: Maximizing Returns with Bayesian Optimization of Supertrend Indicator Parameters ArXiv ID: 2405.14262 “View on arXiv” Authors: Unknown Abstract This paper investigates the potential of Bayesian optimization (BO) to optimize the atr multiplier and atr period -the parameters of the Supertrend indicator for maximizing trading profits across diverse stock datasets. By employing BO, the thesis aims to automate the identification of optimal parameter settings, leading to a more data-driven and potentially more profitable trading strategy compared to relying on manually chosen parameters. The effectiveness of the BO-optimized Supertrend strategy will be evaluated through backtesting on a variety of stock datasets. ...

May 23, 2024 · 2 min · Research Team

Decision Trees for Intuitive Intraday Trading Strategies

Decision Trees for Intuitive Intraday Trading Strategies ArXiv ID: 2405.13959 “View on arXiv” Authors: Unknown Abstract This research paper aims to investigate the efficacy of decision trees in constructing intraday trading strategies using existing technical indicators for individual equities in the NIFTY50 index. Unlike conventional methods that rely on a fixed set of rules based on combinations of technical indicators developed by a human trader through their analysis, the proposed approach leverages decision trees to create unique trading rules for each stock, potentially enhancing trading performance and saving time. By extensively backtesting the strategy for each stock, a trader can determine whether to employ the rules generated by the decision tree for that specific stock. While this method does not guarantee success for every stock, decision treebased strategies outperform the simple buy-and-hold strategy for many stocks. The results highlight the proficiency of decision trees as a valuable tool for enhancing intraday trading performance on a stock-by-stock basis and could be of interest to traders seeking to improve their trading strategies. ...

May 22, 2024 · 2 min · Research Team

Distributional Reference Class Forecasting of Corporate Sales Growth With Multiple Reference Variables

Distributional Reference Class Forecasting of Corporate Sales Growth With Multiple Reference Variables ArXiv ID: 2405.03402 “View on arXiv” Authors: Unknown Abstract This paper introduces an approach to reference class selection in distributional forecasting with an application to corporate sales growth rates using several co-variates as reference variables, that are implicit predictors. The method can be used to detect expert or model-based forecasts exposed to (behavioral) bias or to forecast distributions with reference classes. These are sets of similar entities, here firms, and rank based algorithms for their selection are proposed, including an optional preprocessing data dimension reduction via principal components analysis. Forecasts are optimal if they match the underlying distribution as closely as possible. Probability integral transform values rank the forecast capability of different reference variable sets and algorithms in a backtest on a data set of 21,808 US firms over the time period 1950 - 2019. In particular, algorithms on dimension reduced variables perform well using contemporaneous balance sheet and financial market parameters along with past sales growth rates and past operating margins changes. Comparisions of actual analysts’ estimates to distributional forecasts and of historic distributional forecasts to realized sales growth illustrate the practical use of the method. ...

May 6, 2024 · 2 min · Research Team

A novel scaling approach for unbiased adjustment of risk estimators

A novel scaling approach for unbiased adjustment of risk estimators ArXiv ID: 2312.05655 “View on arXiv” Authors: Unknown Abstract The assessment of risk based on historical data faces many challenges, in particular due to the limited amount of available data, lack of stationarity, and heavy tails. While estimation on a short-term horizon for less extreme percentiles tends to be reasonably accurate, extending it to longer time horizons or extreme percentiles poses significant difficulties. The application of theoretical risk scaling laws to address this issue has been extensively explored in the literature. This paper presents a novel approach to scaling a given risk estimator, ensuring that the estimated capital reserve is robust and conservatively estimates the risk. We develop a simple statistical framework that allows efficient risk scaling and has a direct link to backtesting performance. Our method allows time scaling beyond the conventional square-root-of-time rule, enables risk transfers, such as those involved in economic capital allocation, and could be used for unbiased risk estimation in small sample settings. To demonstrate the effectiveness of our approach, we provide various examples related to the estimation of value-at-risk and expected shortfall together with a short empirical study analysing the impact of our method. ...

December 9, 2023 · 2 min · Research Team

Combining Deep Learning on Order Books with Reinforcement Learning for Profitable Trading

Combining Deep Learning on Order Books with Reinforcement Learning for Profitable Trading ArXiv ID: 2311.02088 “View on arXiv” Authors: Unknown Abstract High-frequency trading is prevalent, where automated decisions must be made quickly to take advantage of price imbalances and patterns in price action that forecast near-future movements. While many algorithms have been explored and tested, analytical methods fail to harness the whole nature of the market environment by focusing on a limited domain. With the evergrowing machine learning field, many large-scale end-to-end studies on raw data have been successfully employed to increase the domain scope for profitable trading but are very difficult to replicate. Combining deep learning on the order books with reinforcement learning is one way of breaking down large-scale end-to-end learning into more manageable and lightweight components for reproducibility, suitable for retail trading. The following work focuses on forecasting returns across multiple horizons using order flow imbalance and training three temporal-difference learning models for five financial instruments to provide trading signals. The instruments used are two foreign exchange pairs (GBPUSD and EURUSD), two indices (DE40 and FTSE100), and one commodity (XAUUSD). The performances of these 15 agents are evaluated through backtesting simulation, and successful models proceed through to forward testing on a retail trading platform. The results prove potential but require further minimal modifications for consistently profitable trading to fully handle retail trading costs, slippage, and spread fluctuation. ...

October 24, 2023 · 2 min · Research Team

Startup success prediction and VC portfolio simulation using CrunchBase data

Startup success prediction and VC portfolio simulation using CrunchBase data ArXiv ID: 2309.15552 “View on arXiv” Authors: Unknown Abstract Predicting startup success presents a formidable challenge due to the inherently volatile landscape of the entrepreneurial ecosystem. The advent of extensive databases like Crunchbase jointly with available open data enables the application of machine learning and artificial intelligence for more accurate predictive analytics. This paper focuses on startups at their Series B and Series C investment stages, aiming to predict key success milestones such as achieving an Initial Public Offering (IPO), attaining unicorn status, or executing a successful Merger and Acquisition (M&A). We introduce novel deep learning model for predicting startup success, integrating a variety of factors such as funding metrics, founder features, industry category. A distinctive feature of our research is the use of a comprehensive backtesting algorithm designed to simulate the venture capital investment process. This simulation allows for a robust evaluation of our model’s performance against historical data, providing actionable insights into its practical utility in real-world investment contexts. Evaluating our model on Crunchbase’s, we achieved a 14 times capital growth and successfully identified on B round high-potential startups including Revolut, DigitalOcean, Klarna, Github and others. Our empirical findings illuminate the importance of incorporating diverse feature sets in enhancing the model’s predictive accuracy. In summary, our work demonstrates the considerable promise of deep learning models and alternative unstructured data in predicting startup success and sets the stage for future advancements in this research area. ...

September 27, 2023 · 2 min · Research Team

Sizing Strategies for Algorithmic Trading in Volatile Markets: A Study of Backtesting and Risk Mitigation Analysis

Sizing Strategies for Algorithmic Trading in Volatile Markets: A Study of Backtesting and Risk Mitigation Analysis ArXiv ID: 2309.09094 “View on arXiv” Authors: Unknown Abstract Backtest is a way of financial risk evaluation which helps to analyze how our trading algorithm would work in markets with past time frame. The high volatility situation has always been a critical situation which creates challenges for algorithmic traders. The paper investigates different models of sizing in financial trading and backtest to high volatility situations to understand how sizing models can lower the models of VaR during crisis events. Hence it tries to show that how crisis events with high volatility can be controlled using short and long positional size. The paper also investigates stocks with AR, ARIMA, LSTM, GARCH with ETF data. ...

September 16, 2023 · 2 min · Research Team