false

Boundary error control for numerical solution of BSDEs by the convolution-FFT method

Boundary error control for numerical solution of BSDEs by the convolution-FFT method ArXiv ID: 2512.24714 “View on arXiv” Authors: Xiang Gao, Cody Hyndman Abstract We first review the convolution fast-Fourier-transform (CFFT) approach for the numerical solution of backward stochastic differential equations (BSDEs) introduced in (Hyndman and Oyono Ngou, 2017). We then propose a method for improving the boundary errors obtained when valuing options using this approach. We modify the damping and shifting schemes used in the original formulation, which transforms the target function into a bounded periodic function so that Fourier transforms can be applied successfully. Time-dependent shifting reduces boundary error significantly. We present numerical results for our implementation and provide a detailed error analysis showing the improved accuracy and convergence of the modified convolution method. ...

December 31, 2025 · 2 min · Research Team

Equilibrium Portfolio Selection under Utility-Variance Analysis of Log Returns in Incomplete Markets

Equilibrium Portfolio Selection under Utility-Variance Analysis of Log Returns in Incomplete Markets ArXiv ID: 2511.05861 “View on arXiv” Authors: Yue Cao, Zongxia Liang, Sheng Wang, Xiang Yu Abstract This paper investigates a time-inconsistent portfolio selection problem in the incomplete mar ket model, integrating expected utility maximization with risk control. The objective functional balances the expected utility and variance on log returns, giving rise to time inconsistency and motivating the search of a time-consistent equilibrium strategy. We characterize the equilibrium via a coupled quadratic backward stochastic differential equation (BSDE) system and establish the existence theory in two special cases: (i)the two Brownian motions driven the price dynamics and the factor process are independent with $ρ= 0$; (ii) the trading strategy is constrained to be bounded. For the general case with correlation coefficient $ρ\neq 0$, we introduce the notion of an approximate time-consistent equilibrium. Employing the solution structure from the equilibrium in the case $ρ= 0$, we can construct an approximate time-consistent equilibrium in the general case with an error of order $O(ρ^2)$. Numerical examples and financial insights are also presented based on deep learning algorithms. ...

November 8, 2025 · 2 min · Research Team

Competitive optimal portfolio selection under mean-variance criterion

Competitive optimal portfolio selection under mean-variance criterion ArXiv ID: 2511.05270 “View on arXiv” Authors: Guojiang Shao, Zuo Quan Xu, Qi Zhang Abstract We investigate a portfolio selection problem involving multi competitive agents, each exhibiting mean-variance preferences. Unlike classical models, each agent’s utility is determined by their relative wealth compared to the average wealth of all agents, introducing a competitive dynamic into the optimization framework. To address this game-theoretic problem, we first reformulate the mean-variance criterion as a constrained, non-homogeneous stochastic linear-quadratic control problem and derive the corresponding optimal feedback strategies. The existence of Nash equilibria is shown to depend on the well-posedness of a complex, coupled system of equations. Employing decoupling techniques, we reduce the well-posedness analysis to the solvability of a novel class of multi-dimensional linear backward stochastic differential equations (BSDEs). We solve a new type of nonlinear BSDEs (including the above linear one as a special case) using fixed-point theory. Depending on the interplay between market and competition parameters, three distinct scenarios arise: (i) the existence of a unique Nash equilibrium, (ii) the absence of any Nash equilibrium, and (iii) the existence of infinitely many Nash equilibria. These scenarios are rigorously characterized and discussed in detail. ...

November 7, 2025 · 2 min · Research Team

A forward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations

A forward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations ArXiv ID: 2408.05620 “View on arXiv” Authors: Unknown Abstract In this work, we present a novel forward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations (BSDEs). Motivated by the fact that differential deep learning can efficiently approximate the labels and their derivatives with respect to inputs, we transform the BSDE problem into a differential deep learning problem. This is done by leveraging Malliavin calculus, resulting in a system of BSDEs. The unknown solution of the BSDE system is a triple of processes $(Y, Z, Γ)$, representing the solution, its gradient, and the Hessian matrix. The main idea of our algorithm is to discretize the integrals using the Euler-Maruyama method and approximate the unknown discrete solution triple using three deep neural networks. The parameters of these networks are then optimized by globally minimizing a differential learning loss function, which is novelty defined as a weighted sum of the dynamics of the discretized system of BSDEs. Through various high-dimensional examples, we demonstrate that our proposed scheme is more efficient in terms of accuracy and computation time compared to other contemporary forward deep learning-based methodologies. ...

August 10, 2024 · 2 min · Research Team

Constrained monotone mean--variance investment-reinsurance under the Cramér--Lundberg model with random coefficients

Constrained monotone mean–variance investment-reinsurance under the Cramér–Lundberg model with random coefficients ArXiv ID: 2405.17841 “View on arXiv” Authors: Unknown Abstract This paper studies an optimal investment-reinsurance problem for an insurer (she) under the Cramér–Lundberg model with monotone mean–variance (MMV) criterion. At any time, the insurer can purchase reinsurance (or acquire new business) and invest in a security market consisting of a risk-free asset and multiple risky assets whose excess return rate and volatility rate are allowed to be random. The trading strategy is subject to a general convex cone constraint, encompassing no-shorting constraint as a special case. The optimal investment-reinsurance strategy and optimal value for the MMV problem are deduced by solving certain backward stochastic differential equations with jumps. In the literature, it is known that models with MMV criterion and mean–variance criterion lead to the same optimal strategy and optimal value when the wealth process is continuous. Our result shows that the conclusion remains true even if the wealth process has compensated Poisson jumps and the market coefficients are random. ...

May 28, 2024 · 2 min · Research Team

A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations

A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations ArXiv ID: 2404.08456 “View on arXiv” Authors: Unknown Abstract In this work, we propose a novel backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations (BSDEs), where the deep neural network (DNN) models are trained not only on the inputs and labels but also the differentials of the corresponding labels. This is motivated by the fact that differential deep learning can provide an efficient approximation of the labels and their derivatives with respect to inputs. The BSDEs are reformulated as differential deep learning problems by using Malliavin calculus. The Malliavin derivatives of solution to a BSDE satisfy themselves another BSDE, resulting thus in a system of BSDEs. Such formulation requires the estimation of the solution, its gradient, and the Hessian matrix, represented by the triple of processes $\left(Y, Z, Γ\right).$ All the integrals within this system are discretized by using the Euler-Maruyama method. Subsequently, DNNs are employed to approximate the triple of these unknown processes. The DNN parameters are backwardly optimized at each time step by minimizing a differential learning type loss function, which is defined as a weighted sum of the dynamics of the discretized BSDE system, with the first term providing the dynamics of the process $Y$ and the other the process $Z$. An error analysis is carried out to show the convergence of the proposed algorithm. Various numerical experiments up to $50$ dimensions are provided to demonstrate the high efficiency. Both theoretically and numerically, it is demonstrated that our proposed scheme is more efficient compared to other contemporary deep learning-based methodologies, especially in the computation of the process $Γ$. ...

April 12, 2024 · 2 min · Research Team

An Explicit Scheme for Pathwise XVA Computations

An Explicit Scheme for Pathwise XVA Computations ArXiv ID: 2401.13314 “View on arXiv” Authors: Unknown Abstract Motivated by the equations of cross valuation adjustments (XVAs) in the realistic case where capital is deemed fungible as a source of funding for variation margin, we introduce a simulation/regression scheme for a class of anticipated BSDEs, where the coefficient entails a conditional expected shortfall of the martingale part of the solution. The scheme is explicit in time and uses neural network least-squares and quantile regressions for the embedded conditional expectations and expected shortfall computations. An a posteriori Monte Carlo validation procedure allows assessing the regression error of the scheme at each time step. The superiority of this scheme with respect to Picard iterations is illustrated in a high-dimensional and hybrid market/default risks XVA use-case. ...

January 24, 2024 · 2 min · Research Team