false

Dynamic Risk in the U.S. Banking System: An Analysis of Sentiment, Policy Shocks, and Spillover Effects

Dynamic Risk in the U.S. Banking System: An Analysis of Sentiment, Policy Shocks, and Spillover Effects ArXiv ID: 2601.01783 “View on arXiv” Authors: Haibo Wang, Jun Huang, Lutfu S Sua, Jaime Ortiz, Jinshyang Roan, Bahram Alidaee Abstract The 2023 U.S. banking crisis propagated not through direct financial linkages but through a high-frequency, information-based contagion channel. This paper moves beyond exploration analysis to test the “too-similar-to-fail” hypothesis, arguing that risk spillovers were driven by perceived similarities in bank business models under acute interest rate pressure. Employing a Time-Varying Parameter Vector Autoregression (TVP-VAR) model with 30-day rolling windows, a method uniquely suited for capturing the rapid network shifts inherent in a panic, we analyze daily stock returns for the four failed institutions and a systematically selected peer group of surviving banks vulnerable to the same risks from March 18, 2022, to March 15, 2023. Our results provide strong evidence for this contagion channel: total system connectedness surged dramatically during the crisis peak, and we identify SIVB, FRC, and WAL as primary net transmitters of risk while their perceived peers became significant net receivers, a key dynamic indicator of systemic vulnerability that cannot be captured by asset-by-asset analysis. We further demonstrate that these spillovers were significantly amplified by market sentiment (as measured by the VIX) and economic policy uncertainty (EPU). By providing a clear conceptual framework and robust empirical validation, our findings confirm the persistence of systemic risks within the banking network and highlight the importance of real-time monitoring in strengthening financial stability. ...

January 5, 2026 · 2 min · Research Team

Modeling Bank Systemic Risk of Emerging Markets under Geopolitical Shocks: Empirical Evidence from BRICS Countries

Modeling Bank Systemic Risk of Emerging Markets under Geopolitical Shocks: Empirical Evidence from BRICS Countries ArXiv ID: 2512.20515 “View on arXiv” Authors: Haibo Wang Abstract The growing economic influence of the BRICS nations requires risk models that capture complex, long-term dynamics. This paper introduces the Bank Risk Interlinkage with Dynamic Graph and Event Simulations (BRIDGES) framework, which analyzes systemic risk based on the level of information complexity (zero-order, first-order, and second-order). BRIDGES utilizes the Dynamic Time Warping (DTW) distance to construct a dynamic network for 551 BRICS banks based on their strategic similarity, using zero-order information such as annual balance sheet data from 2008 to 2024. It then employs first-order information, including trends in risk ratios, to detect shifts in banks’ behavior. A Temporal Graph Neural Network (TGNN), as the core of BRIDGES, is deployed to learn network evolutions and detect second-order information, such as anomalous changes in the structural relationships of the bank network. To measure the impact of anomalous changes on network stability, BRIDGES performs Agent-Based Model (ABM) simulations to assess the banking system’s resilience to internal financial failure and external geopolitical shocks at the individual country level and across BRICS nations. Simulation results show that the failure of the largest institutions causes more systemic damage than the failure of the financially vulnerable or dynamically anomalous ones, driven by powerful panic effects. Compared to this “too big to fail” scenario, a geopolitical shock with correlated country-wide propagation causes more destructive systemic damage, leading to a near-total systemic collapse. It suggests that the primary threats to BRICS financial stability are second-order panic and large-scale geopolitical shocks, which traditional risk analysis models might not detect. ...

December 23, 2025 · 3 min · Research Team