false

Monte-Carlo Option Pricing in Quantum Parallel

Monte-Carlo Option Pricing in Quantum Parallel ArXiv ID: 2505.09459 “View on arXiv” Authors: Robert Scriba, Yuying Li, Jingbo B Wang Abstract Financial derivative pricing is a significant challenge in finance, involving the valuation of instruments like options based on underlying assets. While some cases have simple solutions, many require complex classical computational methods like Monte Carlo simulations and numerical techniques. However, as derivative complexities increase, these methods face limitations in computational power. Cases involving Non-Vanilla Basket pricing, American Options, and derivative portfolio risk analysis need extensive computations in higher-dimensional spaces, posing challenges for classical computers. Quantum computing presents a promising avenue by harnessing quantum superposition and entanglement, allowing the handling of high-dimensional spaces effectively. In this paper, we introduce a self-contained and all-encompassing quantum algorithm that operates without reliance on oracles or presumptions. More specifically, we develop an effective stochastic method for simulating exponentially many potential asset paths in quantum parallel, leading to a highly accurate final distribution of stock prices. Furthermore, we demonstrate how this algorithm can be extended to price more complex options and analyze risk within derivative portfolios. ...

May 14, 2025 · 2 min · Research Team

A second order finite volume IMEX Runge-Kutta scheme for two dimensional PDEs in finance

A second order finite volume IMEX Runge-Kutta scheme for two dimensional PDEs in finance ArXiv ID: 2410.02925 “View on arXiv” Authors: Unknown Abstract In this article we present a novel and general methodology for building second order finite volume implicit-explicit (IMEX) numerical schemes for solving two dimensional financial parabolic PDEs with mixed derivatives. In particular, applications to basket and Heston models are presented. The obtained numerical schemes have excellent properties and are able to overcome the well-documented difficulties related with numerical approximations in the financial literature. The methods achieve true second order convergence with non-regular initial conditions. Besides, the IMEX time integrator allows to overcome the tiny time-step induced by the diffusive term in the explicit schemes, also providing very accurate and non-oscillatory approximations of the Greeks. Finally, in order to assess all the aforementioned good properties of the developed numerical schemes, we compute extremely accurate semi-analytic solutions using multi-dimensional Fourier cosine expansions. A novel technique to truncate the Fourier series for basket options is presented and it is efficiently implemented using multi-GPUs. ...

October 3, 2024 · 2 min · Research Team

Stochastic Expansion for the Pricing of Asian and Basket Options

Stochastic Expansion for the Pricing of Asian and Basket Options ArXiv ID: 2402.17684 “View on arXiv” Authors: Unknown Abstract We present closed analytical approximations for the pricing of basket options, also applicable to Asian options with discrete averaging under the Black-Scholes model with time-dependent parameters. The formulae are obtained by using a stochastic Taylor expansion around a log-normal proxy model and are found to be highly accurate for Asian options in practice as well as for vanilla options with discrete dividends. ...

February 27, 2024 · 1 min · Research Team