false

Deep Hedging Bermudan Swaptions

Deep Hedging Bermudan Swaptions ArXiv ID: 2411.10079 “View on arXiv” Authors: Unknown Abstract Abstract This paper proposes a novel approach to Bermudan swaption hedging by applying the deep hedging framework to address limitations of traditional arbitrage-free methods. Conventional methods assume ideal conditions, such as zero transaction costs, perfect liquidity, and continuous-time hedging, which often differ from real market environments. This discrepancy can lead to residual profit and loss (P&L), resulting in two primary issues. First, residual P&L may prevent achieving the initial model price, especially with improper parameter settings, potentially causing a negative P&L trend and significant financial impacts. Second, controlling the distribution of residual P&L to mitigate downside risk is challenging, as hedged positions may become curve gamma-short, making them vulnerable to large interest rate movements. The deep hedging approach enables flexible selection of convex risk measures and hedge strategies, allowing for improved residual P&L management. This study also addresses challenges in applying the deep hedging approach to Bermudan swaptions, such as efficient arbitrage-free market scenario generation and managing early exercise conditions. Additionally, we introduce a unique “Option Spread Hedge” strategy, which allows for robust hedging and provides intuitive interpretability. Numerical analysis results demonstrate the effectiveness of our approach. ...

November 15, 2024 · 2 min · Research Team

Deep Joint Learning valuation of Bermudan Swaptions

Deep Joint Learning valuation of Bermudan Swaptions ArXiv ID: 2404.11257 “View on arXiv” Authors: Unknown Abstract This paper addresses the problem of pricing involved financial derivatives by means of advanced of deep learning techniques. More precisely, we smartly combine several sophisticated neural network-based concepts like differential machine learning, Monte Carlo simulation-like training samples and joint learning to come up with an efficient numerical solution. The application of the latter development represents a novelty in the context of computational finance. We also propose a novel design of interdependent neural networks to price early-exercise products, in this case, Bermudan swaptions. The improvements in efficiency and accuracy provided by the here proposed approach is widely illustrated throughout a range of numerical experiments. Moreover, this novel methodology can be extended to the pricing of other financial derivatives. ...

April 17, 2024 · 2 min · Research Team