false

Portfolio optimization in incomplete markets and price constraints determined by maximum entropy in the mean

Portfolio optimization in incomplete markets and price constraints determined by maximum entropy in the mean ArXiv ID: 2507.07053 “View on arXiv” Authors: Argimiro Arratia, Henryk Gzyl Abstract A solution to a portfolio optimization problem is always conditioned by constraints on the initial capital and the price of the available market assets. If a risk neutral measure is known, then the price of each asset is the discounted expected value of the asset’s price under this measure. But if the market is incomplete, the risk neutral measure is not unique, and there is a range of possible prices for each asset, which can be identified with bid-ask ranges. We present in this paper an effective method to determine the current prices of a collection of assets in incomplete markets, and such that these prices comply with the cost constraints for a portfolio optimization problem. Our workhorse is the method of maximum entropy in the mean to adjust a distortion function from bid-ask market data. This distortion function plays the role of a risk neutral measure, which is used to price the assets, and the distorted probability that it determines reproduces bid-ask market values. We carry out numerical examples to study the effect on portfolio returns of the computation of prices of the assets conforming the portfolio with the proposed methodology. ...

July 3, 2025 · 2 min · Research Team

Market Making without Regret

Market Making without Regret ArXiv ID: 2411.13993 “View on arXiv” Authors: Unknown Abstract We consider a sequential decision-making setting where, at every round $t$, a market maker posts a bid price $B_t$ and an ask price $A_t$ to an incoming trader (the taker) with a private valuation for one unit of some asset. If the trader’s valuation is lower than the bid price, or higher than the ask price, then a trade (sell or buy) occurs. If a trade happens at round $t$, then letting $M_t$ be the market price (observed only at the end of round $t$), the maker’s utility is $M_t - B_t$ if the maker bought the asset, and $A_t - M_t$ if they sold it. We characterize the maker’s regret with respect to the best fixed choice of bid and ask pairs under a variety of assumptions (adversarial, i.i.d., and their variants) on the sequence of market prices and valuations. Our upper bound analysis unveils an intriguing connection relating market making to first-price auctions and dynamic pricing. Our main technical contribution is a lower bound for the i.i.d. case with Lipschitz distributions and independence between prices and valuations. The difficulty in the analysis stems from the unique structure of the reward and feedback functions, allowing an algorithm to acquire information by graduating the “cost of exploration” in an arbitrary way. ...

November 21, 2024 · 2 min · Research Team

Reinforcement Learning for Corporate Bond Trading: A Sell Side Perspective

Reinforcement Learning for Corporate Bond Trading: A Sell Side Perspective ArXiv ID: 2406.12983 “View on arXiv” Authors: Unknown Abstract A corporate bond trader in a typical sell side institution such as a bank provides liquidity to the market participants by buying/selling securities and maintaining an inventory. Upon receiving a request for a buy/sell price quote (RFQ), the trader provides a quote by adding a spread over a \textit{“prevalent market price”}. For illiquid bonds, the market price is harder to observe, and traders often resort to available benchmark bond prices (such as MarketAxess, Bloomberg, etc.). In \cite{“Bergault2023ModelingLI”}, the concept of \textit{“Fair Transfer Price”} for an illiquid corporate bond was introduced which is derived from an infinite horizon stochastic optimal control problem (for maximizing the trader’s expected P&L, regularized by the quadratic variation). In this paper, we consider the same optimization objective, however, we approach the estimation of an optimal bid-ask spread quoting strategy in a data driven manner and show that it can be learned using Reinforcement Learning. Furthermore, we perform extensive outcome analysis to examine the reasonableness of the trained agent’s behavior. ...

June 18, 2024 · 2 min · Research Team

Almost Perfect Shadow Prices

Almost Perfect Shadow Prices ArXiv ID: 2401.00970 “View on arXiv” Authors: Unknown Abstract Shadow prices simplify the derivation of optimal trading strategies in markets with transaction costs by transferring optimization into a more tractable, frictionless market. This paper establishes that a naïve shadow price Ansatz for maximizing long term returns given average volatility yields a strategy that is, for small bid-ask-spreads, asymptotically optimal at third order. Considering the second-order impact of transaction costs, such a strategy is essentially optimal. However, for risk aversion different from one, we devise alternative strategies that outperform the shadow market at fourth order. Finally, it is shown that the risk-neutral objective rules out the existence of shadow prices. ...

January 1, 2024 · 2 min · Research Team