false

Mean-Field Price Formation on Trees with Multi-Population and Non-Rational Agents

Mean-Field Price Formation on Trees with Multi-Population and Non-Rational Agents ArXiv ID: 2510.11261 “View on arXiv” Authors: Masaaki Fujii Abstract This work solves the equilibrium price formation problem for the risky stock by combining mean-field game theory with the binomial tree framework, adapting the classic approach of Cox, Ross & Rubinstein. For agents with exponential and recursive utilities of exponential-type, we prove the existence of a unique mean-field market-clearing equilibrium and derive an explicit analytic formula for equilibrium transition probabilities of the stock price on the binomial lattice. The agents face stochastic terminal liabilities and incremental endowments that depend on unhedgeable common and idiosyncratic factors, in addition to the stock price path. We also incorporate an external order flow. Furthermore, the analytic tractability of the proposed approach allows us to extend the framework in two important directions: First, we incorporate multi-population heterogeneity, allowing agents to differ in functional forms for their liabilities, endowments, and risk coefficients. Second, we relax the rational expectations hypothesis by modeling agents operating under subjective probability measures which induce stochastically biased views on the stock transition probabilities. Our numerical examples illustrate the qualitative effects of these components on the equilibrium price distribution. ...

October 13, 2025 · 2 min · Research Team

High-Frequency Options Trading | With Portfolio Optimization

High-Frequency Options Trading | With Portfolio Optimization ArXiv ID: 2408.08866 “View on arXiv” Authors: Unknown Abstract This paper explores the effectiveness of high-frequency options trading strategies enhanced by advanced portfolio optimization techniques, investigating their ability to consistently generate positive returns compared to traditional long or short positions on options. Utilizing SPY options data recorded in five-minute intervals over a one-month period, we calculate key metrics such as Option Greeks and implied volatility, applying the Binomial Tree model for American options pricing and the Newton-Raphson algorithm for implied volatility calculation. Investment universes are constructed based on criteria like implied volatility and Greeks, followed by the application of various portfolio optimization models, including Standard Mean-Variance and Robust Methods. Our research finds that while basic long-short strategies centered on implied volatility and Greeks generally underperform, more sophisticated strategies incorporating advanced Greeks, such as Vega and Rho, along with dynamic portfolio optimization, show potential in effectively navigating the complexities of the options market. The study highlights the importance of adaptability and responsiveness in dynamic portfolio strategies within the high-frequency trading environment, particularly under volatile market conditions. Future research could refine strategy parameters and explore less frequently traded options, offering new insights into high-frequency options trading and portfolio management. ...

August 16, 2024 · 2 min · Research Team