false

Tweet Influence on Market Trends: Analyzing the Impact of Social Media Sentiment on Biotech Stocks

Tweet Influence on Market Trends: Analyzing the Impact of Social Media Sentiment on Biotech Stocks ArXiv ID: 2402.03353 “View on arXiv” Authors: Unknown Abstract This study investigates the relationship between tweet sentiment across diverse categories: news, company opinions, CEO opinions, competitor opinions, and stock market behavior in the biotechnology sector, with a focus on understanding the impact of social media discourse on investor sentiment and decision-making processes. We analyzed historical stock market data for ten of the largest and most influential pharmaceutical companies alongside Twitter data related to COVID-19, vaccines, the companies, and their respective CEOs. Using VADER sentiment analysis, we examined the sentiment scores of tweets and assessed their relationships with stock market performance. We employed ARIMA (AutoRegressive Integrated Moving Average) and VAR (Vector AutoRegression) models to forecast stock market performance, incorporating sentiment covariates to improve predictions. Our findings revealed a complex interplay between tweet sentiment, news, biotech companies, their CEOs, and stock market performance, emphasizing the importance of considering diverse factors when modeling and predicting stock prices. This study provides valuable insights into the influence of social media on the financial sector and lays a foundation for future research aimed at refining stock price prediction models. ...

January 26, 2024 · 2 min · Research Team

BioFinBERT: Finetuning Large Language Models (LLMs) to Analyze Sentiment of Press Releases and Financial Text Around Inflection Points of Biotech Stocks

BioFinBERT: Finetuning Large Language Models (LLMs) to Analyze Sentiment of Press Releases and Financial Text Around Inflection Points of Biotech Stocks ArXiv ID: 2401.11011 “View on arXiv” Authors: Unknown Abstract Large language models (LLMs) are deep learning algorithms being used to perform natural language processing tasks in various fields, from social sciences to finance and biomedical sciences. Developing and training a new LLM can be very computationally expensive, so it is becoming a common practice to take existing LLMs and finetune them with carefully curated datasets for desired applications in different fields. Here, we present BioFinBERT, a finetuned LLM to perform financial sentiment analysis of public text associated with stocks of companies in the biotechnology sector. The stocks of biotech companies developing highly innovative and risky therapeutic drugs tend to respond very positively or negatively upon a successful or failed clinical readout or regulatory approval of their drug, respectively. These clinical or regulatory results are disclosed by the biotech companies via press releases, which are followed by a significant stock response in many cases. In our attempt to design a LLM capable of analyzing the sentiment of these press releases,we first finetuned BioBERT, a biomedical language representation model designed for biomedical text mining, using financial textual databases. Our finetuned model, termed BioFinBERT, was then used to perform financial sentiment analysis of various biotech-related press releases and financial text around inflection points that significantly affected the price of biotech stocks. ...

January 19, 2024 · 2 min · Research Team