false

Comparative Study of Bitcoin Price Prediction

Comparative Study of Bitcoin Price Prediction ArXiv ID: 2405.08089 “View on arXiv” Authors: Unknown Abstract Prediction of stock prices has been a crucial and challenging task, especially in the case of highly volatile digital currencies such as Bitcoin. This research examineS the potential of using neural network models, namely LSTMs and GRUs, to forecast Bitcoin’s price movements. We employ five-fold cross-validation to enhance generalization and utilize L2 regularization to reduce overfitting and noise. Our study demonstrates that the GRUs models offer better accuracy than LSTMs model for predicting Bitcoin’s price. Specifically, the GRU model has an MSE of 4.67, while the LSTM model has an MSE of 6.25 when compared to the actual prices in the test set data. This finding indicates that GRU models are better equipped to process sequential data with long-term dependencies, a characteristic of financial time series data such as Bitcoin prices. In summary, our results provide valuable insights into the potential of neural network models for accurate Bitcoin price prediction and emphasize the importance of employing appropriate regularization techniques to enhance model performance. ...

May 13, 2024 · 2 min · Research Team

Stylized Facts of High-Frequency Bitcoin Time Series

Stylized Facts of High-Frequency Bitcoin Time Series ArXiv ID: 2402.11930 “View on arXiv” Authors: Unknown Abstract This paper analyses the high-frequency intraday Bitcoin dataset from 2019 to 2022. During this time frame, the Bitcoin market index exhibited two distinct periods, 2019-20 and 2021-22, characterized by an abrupt change in volatility. The Bitcoin price returns for both periods can be described by an anomalous diffusion process, transitioning from subdiffusion for short intervals to weak superdiffusion over longer time intervals. The characteristic features related to this anomalous behavior studied in the present paper include heavy tails, which can be described using a $q$-Gaussian distribution and correlations. When we sample the autocorrelation of absolute returns, we observe a power-law relationship, indicating time dependence in both periods initially. The ensemble autocorrelation of the returns decays rapidly. We fitted the autocorrelation with a power law to capture the decay and found that the second period experienced a slightly higher decay rate. The further study involves the analysis of endogenous effects within the Bitcoin time series, which are examined through detrending analysis. We found that both periods are multifractal and present self-similarity in the detrended probability density function (PDF). The Hurst exponent over short time intervals shifts from less than 0.5 ($\sim$ 0.42) in Period 1 to closer to 0.5 in Period 2 ($\sim$ 0.49), indicating that the market has gained efficiency over time. ...

February 19, 2024 · 2 min · Research Team

Blockchain Metrics and Indicators in Cryptocurrency Trading

Blockchain Metrics and Indicators in Cryptocurrency Trading ArXiv ID: 2403.00770 “View on arXiv” Authors: Unknown Abstract The objective of this paper is the construction of new indicators that can be useful to operate in the cryptocurrency market. These indicators are based on public data obtained from the blockchain network, specifically from the nodes that make up Bitcoin mining. Therefore, our analysis is unique to that network. The results obtained with numerical simulations of algorithmic trading and prediction via statistical models and Machine Learning demonstrate the importance of variables such as the hash rate, the difficulty of mining or the cost per transaction when it comes to trade Bitcoin assets or predict the direction of price. Variables obtained from the blockchain network will be called here blockchain metrics. The corresponding indicators (inspired by the “Hash Ribbon”) perform well in locating buy signals. From our results, we conclude that such blockchain indicators allow obtaining information with a statistical advantage in the highly volatile cryptocurrency market. ...

February 11, 2024 · 2 min · Research Team

Scaling Laws And Statistical Properties of The Transaction Flows And Holding Times of Bitcoin

Scaling Laws And Statistical Properties of The Transaction Flows And Holding Times of Bitcoin ArXiv ID: 2401.04702 “View on arXiv” Authors: Unknown Abstract We study the temporal evolution of the holding-time distribution of bitcoins and find that the average distribution of holding-time is a heavy-tailed power law extending from one day to over at least $200$ weeks with an exponent approximately equal to $0.9$, indicating very long memory effects. We also report significant sample-to-sample variations of the distribution of holding times, which can be best characterized as multiscaling, with power-law exponents varying between $0.3$ and $2.5$ depending on bitcoin price regimes. We document significant differences between the distributions of book-to-market and of realized returns, showing that traders obtain far from optimal performance. We also report strong direct qualitative and quantitative evidence of the disposition effect in the Bitcoin Blockchain data. Defining age-dependent transaction flows as the fraction of bitcoins that are traded at a given time and that were born (last traded) at some specific earlier time, we document that the time-averaged transaction flow fraction has a power law dependence as a function of age, with an exponent close to $-1.5$, a value compatible with priority queuing theory. We document the existence of multifractality on the measure defined as the normalized number of bitcoins exchanged at a given time. ...

January 9, 2024 · 2 min · Research Team

An adaptive network-based approach for advanced forecasting of cryptocurrency values

An adaptive network-based approach for advanced forecasting of cryptocurrency values ArXiv ID: 2401.05441 “View on arXiv” Authors: Unknown Abstract This paper describes an architecture for predicting the price of cryptocurrencies for the next seven days using the Adaptive Network Based Fuzzy Inference System (ANFIS). Historical data of cryptocurrencies and indexes that are considered are Bitcoin (BTC), Ethereum (ETH), Bitcoin Dominance (BTC.D), and Ethereum Dominance (ETH.D) in a daily timeframe. The methods used to teach the data are hybrid and backpropagation algorithms, as well as grid partition, subtractive clustering, and Fuzzy C-means clustering (FCM) algorithms, which are used in data clustering. The architectural performance designed in this paper has been compared with different inputs and neural network models in terms of statistical evaluation criteria. Finally, the proposed method can predict the price of digital currencies in a short time. ...

January 8, 2024 · 2 min · Research Team

Modelling and Predicting the Conditional Variance of Bitcoin Daily Returns: Comparsion of Markov Switching GARCH and SV Models

Modelling and Predicting the Conditional Variance of Bitcoin Daily Returns: Comparsion of Markov Switching GARCH and SV Models ArXiv ID: 2401.03393 “View on arXiv” Authors: Unknown Abstract This paper introduces a unique and valuable research design aimed at analyzing Bitcoin price volatility. To achieve this, a range of models from the Markov Switching-GARCH and Stochastic Autoregressive Volatility (SARV) model classes are considered and their out-of-sample forecasting performance is thoroughly examined. The paper provides insights into the rationale behind the recommendation for a two-stage estimation approach, emphasizing the separate estimation of coefficients in the mean and variance equations. The results presented in this paper indicate that Stochastic Volatility models, particularly SARV models, outperform MS-GARCH models in forecasting Bitcoin price volatility. Moreover, the study suggests that in certain situations, persistent simple GARCH models may even outperform Markov-Switching GARCH models in predicting the variance of Bitcoin log returns. These findings offer valuable guidance for risk management experts, highlighting the potential advantages of SARV models in managing and forecasting Bitcoin price volatility. ...

January 7, 2024 · 2 min · Research Team

Deep Learning and NLP in Cryptocurrency Forecasting: Integrating Financial, Blockchain, and Social Media Data

Deep Learning and NLP in Cryptocurrency Forecasting: Integrating Financial, Blockchain, and Social Media Data ArXiv ID: 2311.14759 “View on arXiv” Authors: Unknown Abstract We introduce novel approaches to cryptocurrency price forecasting, leveraging Machine Learning (ML) and Natural Language Processing (NLP) techniques, with a focus on Bitcoin and Ethereum. By analysing news and social media content, primarily from Twitter and Reddit, we assess the impact of public sentiment on cryptocurrency markets. A distinctive feature of our methodology is the application of the BART MNLI zero-shot classification model to detect bullish and bearish trends, significantly advancing beyond traditional sentiment analysis. Additionally, we systematically compare a range of pre-trained and fine-tuned deep learning NLP models against conventional dictionary-based sentiment analysis methods. Another key contribution of our work is the adoption of local extrema alongside daily price movements as predictive targets, reducing trading frequency and portfolio volatility. Our findings demonstrate that integrating textual data into cryptocurrency price forecasting not only improves forecasting accuracy but also consistently enhances the profitability and Sharpe ratio across various validation scenarios, particularly when applying deep learning NLP techniques. The entire codebase of our experiments is made available via an online repository: https://anonymous.4open.science/r/crypto-forecasting-public ...

November 23, 2023 · 2 min · Research Team

Neural Network for valuing Bitcoin options under jump-diffusion and market sentiment model

Neural Network for valuing Bitcoin options under jump-diffusion and market sentiment model ArXiv ID: 2310.09622 “View on arXiv” Authors: Unknown Abstract Cryptocurrencies and Bitcoin, in particular, are prone to wild swings resulting in frequent jumps in prices, making them historically popular for traders to speculate. A better understanding of these fluctuations can greatly benefit crypto investors by allowing them to make informed decisions. It is claimed in recent literature that Bitcoin price is influenced by sentiment about the Bitcoin system. Transaction, as well as the popularity, have shown positive evidence as potential drivers of Bitcoin price. This study considers a bivariate jump-diffusion model to describe Bitcoin price dynamics and the number of Google searches affecting the price, representing a sentiment indicator. We obtain a closed formula for the Bitcoin price and derive the Black-Scholes equation for Bitcoin options. We first solve the corresponding Bitcoin option partial differential equation for the pricing process by introducing artificial neural networks and incorporating multi-layer perceptron techniques. The prediction performance and the model validation using various high-volatile stocks were assessed. ...

October 14, 2023 · 2 min · Research Team

Bitcoin versus S&P 500 Index: Return and Risk Analysis

Bitcoin versus S&P 500 Index: Return and Risk Analysis ArXiv ID: 2310.02436 “View on arXiv” Authors: Unknown Abstract The S&P 500 index is considered the most popular trading instrument in financial markets. With the rise of cryptocurrencies over the past years, Bitcoin has also grown in popularity and adoption. The paper aims to analyze the daily return distribution of the Bitcoin and S&P 500 index and assess their tail probabilities through two financial risk measures. As a methodology, We use Bitcoin and S&P 500 Index daily return data to fit The seven-parameter General Tempered Stable (GTS) distribution using the advanced Fast Fractional Fourier transform (FRFT) scheme developed by combining the Fast Fractional Fourier (FRFT) algorithm and the 12-point rule Composite Newton-Cotes Quadrature. The findings show that peakedness is the main characteristic of the S&P 500 return distribution, whereas heavy-tailedness is the main characteristic of the Bitcoin return distribution. The GTS distribution shows that $80.05%$ of S&P 500 returns are within $-1.06%$ and $1.23%$ against only $40.32%$ of Bitcoin returns. At a risk level ($α$), the severity of the loss ($AVaR_α(X)$) on the left side of the distribution is larger than the severity of the profit ($AVaR_{“1-α”}(X)$) on the right side of the distribution. Compared to the S&P 500 index, Bitcoin has $39.73%$ more prevalence to produce high daily returns (more than $1.23%$ or less than $-1.06%$). The severity analysis shows that at a risk level ($α$) the average value-at-risk ($AVaR(X)$) of the bitcoin returns at one significant figure is four times larger than that of the S&P 500 index returns at the same risk. ...

October 3, 2023 · 2 min · Research Team

Chance or Chaos? Fractal geometry aimed to inspect the nature of Bitcoin

Chance or Chaos? Fractal geometry aimed to inspect the nature of Bitcoin ArXiv ID: 2309.00390 “View on arXiv” Authors: Unknown Abstract The aim of this paper is to analyse the Bitcoin in order to shed some light on its nature and behaviour. We select 9 cryptocurrencies that account for almost 75% of total market capitalisation and compare their evolution with that of a wide variety of traditional assets: commodities with spot and futures contracts, treasury bonds, stock indices, growth and value stocks. Fractal geometry will be applied to carry out a careful statistical analysis of the performance of the Bitcoin returns. As a main conclusion, we have detected a high degree of persistence in its prices, which decreases the efficiency but increases its predictability. Moreover, we observe that the underlying technology influences price dynamics, with fully decentralised cryptocurrencies being the only ones to exhibit self-similarity features at any time scale. ...

September 1, 2023 · 2 min · Research Team