false

Can Machine Learning Algorithms Outperform Traditional Models for Option Pricing?

Can Machine Learning Algorithms Outperform Traditional Models for Option Pricing? ArXiv ID: 2510.01446 “View on arXiv” Authors: Georgy Milyushkov Abstract This study investigates the application of machine learning techniques, specifically Neural Networks, Random Forests, and CatBoost for option pricing, in comparison to traditional models such as Black-Scholes and Heston Model. Using both synthetically generated data and real market option data, each model is evaluated in predicting the option price. The results show that machine learning models can capture complex, non-linear relationships in option prices and, in several cases, outperform both Black-Scholes and Heston models. These findings highlight the potential of data-driven methods to improve pricing accuracy and better reflect market dynamics. ...

October 1, 2025 · 2 min · Research Team

On Quantum BSDE Solver for High-Dimensional Parabolic PDEs

On Quantum BSDE Solver for High-Dimensional Parabolic PDEs ArXiv ID: 2506.14612 “View on arXiv” Authors: Howard Su, Huan-Hsin Tseng Abstract We propose a quantum machine learning framework for approximating solutions to high-dimensional parabolic partial differential equations (PDEs) that can be reformulated as backward stochastic differential equations (BSDEs). In contrast to popular quantum-classical network hybrid approaches, this study employs the pure Variational Quantum Circuit (VQC) as the core solver without trainable classical neural networks. The quantum BSDE solver performs pathwise approximation via temporal discretization and Monte Carlo simulation, framed as model-based reinforcement learning. We benchmark VQCbased and classical deep neural network (DNN) solvers on two canonical PDEs as representatives: the Black-Scholes and nonlinear Hamilton-Jacobi-Bellman (HJB) equations. The VQC achieves lower variance and improved accuracy in most cases, particularly in highly nonlinear regimes and for out-of-themoney options, demonstrating greater robustness than DNNs. These results, obtained via quantum circuit simulation, highlight the potential of VQCs as scalable and stable solvers for highdimensional stochastic control problems. ...

June 17, 2025 · 2 min · Research Team

The AI Black-Scholes: Finance-Informed Neural Network

The AI Black-Scholes: Finance-Informed Neural Network ArXiv ID: 2412.12213 “View on arXiv” Authors: Unknown Abstract In the realm of option pricing, existing models are typically classified into principle-driven methods, such as solving partial differential equations (PDEs) that pricing function satisfies, and data-driven approaches, such as machine learning (ML) techniques that parameterize the pricing function directly. While principle-driven models offer a rigorous theoretical framework, they often rely on unrealistic assumptions, such as asset processes adhering to fixed stochastic differential equations (SDEs). Moreover, they can become computationally intensive, particularly in high-dimensional settings when analytical solutions are not available and thus numerical solutions are needed. In contrast, data-driven models excel in capturing market data trends, but they often lack alignment with core financial principles, raising concerns about interpretability and predictive accuracy, especially when dealing with limited or biased datasets. This work proposes a hybrid approach to address these limitations by integrating the strengths of both principled and data-driven methodologies. Our framework combines the theoretical rigor and interpretability of PDE-based models with the adaptability of machine learning techniques, yielding a more versatile methodology for pricing a broad spectrum of options. We validate our approach across different volatility modeling approaches-both with constant volatility (Black-Scholes) and stochastic volatility (Heston), demonstrating that our proposed framework, Finance-Informed Neural Network (FINN), not only enhances predictive accuracy but also maintains adherence to core financial principles. FINN presents a promising tool for practitioners, offering robust performance across a variety of market conditions. ...

December 15, 2024 · 2 min · Research Team

Neural Network Learning of Black-Scholes Equation for Option Pricing

Neural Network Learning of Black-Scholes Equation for Option Pricing ArXiv ID: 2405.05780 “View on arXiv” Authors: Unknown Abstract One of the most discussed problems in the financial world is stock option pricing. The Black-Scholes Equation is a Parabolic Partial Differential Equation which provides an option pricing model. The present work proposes an approach based on Neural Networks to solve the Black-Scholes Equations. Real-world data from the stock options market were used as the initial boundary to solve the Black-Scholes Equation. In particular, times series of call options prices of Brazilian companies Petrobras and Vale were employed. The results indicate that the network can learn to solve the Black-Sholes Equation for a specific real-world stock options time series. The experimental results showed that the Neural network option pricing based on the Black-Sholes Equation solution can reach an option pricing forecasting more accurate than the traditional Black-Sholes analytical solutions. The experimental results making it possible to use this methodology to make short-term call option price forecasts in options markets. ...

May 9, 2024 · 2 min · Research Team

Analysis of the RMM-01 Market Maker

Analysis of the RMM-01 Market Maker ArXiv ID: 2310.14320 “View on arXiv” Authors: Unknown Abstract Constant function market makers(CFMMS) are a popular market design for decentralized exchanges(DEX). Liquidity providers(LPs) supply the CFMMs with assets to enable trades. In exchange for providing this liquidity, an LP receives a token that replicates a payoff determined by the trading function used by the CFMM. In this paper, we study a time-dependent CFMM called RMM-01. The trading function for RMM-01 is chosen such that LPs recover the payoff of a Black–Scholes priced covered call. First, we introduce the general framework for CFMMs. After, we analyze the pricing properties of RMM-01. This includes the cost of price manipulation and the corresponding implications on arbitrage. Our first primary contribution is from examining the time-varying price properties of RMM-01 and determining parameter bounds when RMM-01 has a more stable price than Uniswap. Finally, we discuss combining lending protocols with RMM-01 to achieve other option payoffs which is our other primary contribution. ...

October 22, 2023 · 2 min · Research Team