false

Applying Deep Learning to Calibrate Stochastic Volatility Models

Applying Deep Learning to Calibrate Stochastic Volatility Models ArXiv ID: 2309.07843 “View on arXiv” Authors: Unknown Abstract Stochastic volatility models, where the volatility is a stochastic process, can capture most of the essential stylized facts of implied volatility surfaces and give more realistic dynamics of the volatility smile/skew. However, they come with the significant issue that they take too long to calibrate. Alternative calibration methods based on Deep Learning (DL) techniques have been recently used to build fast and accurate solutions to the calibration problem. Huge and Savine developed a Differential Machine Learning (DML) approach, where Machine Learning models are trained on samples of not only features and labels but also differentials of labels to features. The present work aims to apply the DML technique to price vanilla European options (i.e. the calibration instruments), more specifically, puts when the underlying asset follows a Heston model and then calibrate the model on the trained network. DML allows for fast training and accurate pricing. The trained neural network dramatically reduces Heston calibration’s computation time. In this work, we also introduce different regularisation techniques, and we apply them notably in the case of the DML. We compare their performance in reducing overfitting and improving the generalisation error. The DML performance is also compared to the classical DL (without differentiation) one in the case of Feed-Forward Neural Networks. We show that the DML outperforms the DL. The complete code for our experiments is provided in the GitHub repository: https://github.com/asridi/DML-Calibration-Heston-Model ...

September 14, 2023 · 3 min · Research Team

Deep calibration with random grids

Deep calibration with random grids ArXiv ID: 2306.11061 “View on arXiv” Authors: Unknown Abstract We propose a neural network-based approach to calibrating stochastic volatility models, which combines the pioneering grid approach by Horvath et al. (2021) with the pointwise two-stage calibration of Bayer et al. (2018) and Liu et al. (2019). Our methodology inherits robustness from the former while not suffering from the need for interpolation/extrapolation techniques, a clear advantage ensured by the pointwise approach. The crucial point to the entire procedure is the generation of implied volatility surfaces on random grids, which one dispenses to the network in the training phase. We support the validity of our calibration technique with several empirical and Monte Carlo experiments for the rough Bergomi and Heston models under a simple but effective parametrization of the forward variance curve. The approach paves the way for valuable applications in financial engineering - for instance, pricing under local stochastic volatility models - and extensions to the fast-growing field of path-dependent volatility models. ...

June 19, 2023 · 2 min · Research Team