false

Is All the Information in the Price? LLM Embeddings versus the EMH in Stock Clustering

Is All the Information in the Price? LLM Embeddings versus the EMH in Stock Clustering ArXiv ID: 2509.01590 “View on arXiv” Authors: Bingyang Wang, Grant Johnson, Maria Hybinette, Tucker Balch Abstract This paper investigates whether artificial intelligence can enhance stock clustering compared to traditional methods. We consider this in the context of the semi-strong Efficient Markets Hypothesis (EMH), which posits that prices fully reflect all public information and, accordingly, that clusters based on price information cannot be improved upon. We benchmark three clustering approaches: (i) price-based clusters derived from historical return correlations, (ii) human-informed clusters defined by the Global Industry Classification Standard (GICS), and (iii) AI-driven clusters constructed from large language model (LLM) embeddings of stock-related news headlines. At each date, each method provides a classification in which each stock is assigned to a cluster. To evaluate a clustering, we transform it into a synthetic factor model following the Arbitrage Pricing Theory (APT) framework. This enables consistent evaluation of predictive performance in a roll forward, out-of-sample test. Using S&P 500 constituents from from 2022 through 2024, we find that price-based clustering consistently outperforms both rule-based and AI-based methods, reducing root mean squared error (RMSE) by 15.9% relative to GICS and 14.7% relative to LLM embeddings. Our contributions are threefold: (i) a generalizable methodology that converts any equity grouping: manual, machine, or market-driven, into a real-time factor model for evaluation; (ii) the first direct comparison of price-based, human rule-based, and AI-based clustering under identical conditions; and (iii) empirical evidence reinforcing that short-horizon return information is largely contained in prices. These results support the EMH while offering practitioners a practical diagnostic for monitoring evolving sector structures and provide academics a framework for testing alternative hypotheses about how quickly markets absorb information. ...

September 1, 2025 · 3 min · Research Team

Sparse Portfolio Selection via Topological Data Analysis based Clustering

Sparse Portfolio Selection via Topological Data Analysis based Clustering ArXiv ID: 2401.16920 “View on arXiv” Authors: Unknown Abstract This paper uses topological data analysis (TDA) tools and introduces a data-driven clustering-based stock selection strategy tailored for sparse portfolio construction. Our asset selection strategy exploits the topological features of stock price movements to select a subset of topologically similar (different) assets for a sparse index tracking (Markowitz) portfolio. We introduce new distance measures, which serve as an input to the clustering algorithm, on the space of persistence diagrams and landscapes that consider the time component of a time series. We conduct an empirical analysis on the S&P index from 2009 to 2022, including a study on the COVID-19 data to validate the robustness of our methodology. Our strategy to integrate TDA with the clustering algorithm significantly enhanced the performance of sparse portfolios across various performance measures in diverse market scenarios. ...

January 30, 2024 · 2 min · Research Team