false

Factors Influencing Cryptocurrency Prices: Evidence from Bitcoin, Ethereum, Dash, Litecoin, and Monero

Factors Influencing Cryptocurrency Prices: Evidence from Bitcoin, Ethereum, Dash, Litecoin, and Monero ArXiv ID: 2511.22782 “View on arXiv” Authors: Yhlas Sovbetov Abstract This paper examines factors that influence prices of most common five cryptocurrencies such as Bitcoin, Ethereum, Dash, Litecoin, and Monero over 2010-2018 using weekly data. The study employs ARDL technique and documents several findings. First, cryptomarket-related factors such as market beta, trading volume, and volatility appear to be significant determinant for all five cryptocurrencies both in short- and long-run. Second, attractiveness of cryptocurrencies also matters in terms of their price determination, but only in long-run. This indicates that formation (recognition) of the attractiveness of cryptocurrencies are subjected to time factor. In other words, it travels slowly within the market. Third, SP500 index seems to have weak positive long-run impact on Bitcoin, Ethereum, and Litcoin, while its sign turns to negative losing significance in short-run, except Bitcoin that generates an estimate of -0.20 at 10% significance level. Lastly, error-correction models for Bitcoin, Etherem, Dash, Litcoin, and Monero show that cointegrated series cannot drift too far apart, and converge to a long-run equilibrium at a speed of 23.68%, 12.76%, 10.20%, 22.91%, and 14.27% respectively. ...

November 27, 2025 · 2 min · Research Team

Price Discovery in Cryptocurrency Markets

Price Discovery in Cryptocurrency Markets ArXiv ID: 2506.08718 “View on arXiv” Authors: Juan Plazuelo Pascual, Carlos Tardon Rubio, Juan Toro Cebada, Angel Hernando Veciana Abstract This document analyzes price discovery in cryptocurrency markets by comparing centralized and decentralized exchanges, as well as spot and futures markets. The study focuses first on Ethereum (ETH) and then applies a similar approach to Bitcoin (BTC). Chapter 1 outlines the theoretical framework, emphasizing the structural differences between centralized exchanges and decentralized finance mechanisms, especially Automated Market Makers (AMMs). It also explains how to construct an order book from a liquidity pool in a decentralized setting for comparison with centralized exchanges. Chapter 2 describes the methodological tools used: Hasbrouck’s Information Share, Gonzalo and Granger’s Permanent-Transitory decomposition, and the Hayashi-Yoshida estimator. These are applied to explore lead-lag dynamics, cointegration, and price discovery across market types. Chapter 3 presents the empirical analysis. For ETH, it compares price dynamics on Binance and Uniswap v2 over a one-year period, focusing on five key events in 2024. For BTC, it analyzes the relationship between spot and futures prices on the CME. The study estimates lead-lag effects and cointegration in both cases. Results show that centralized markets typically lead in ETH price discovery. In futures markets, while they tend to lead overall, high-volatility periods produce mixed outcomes. The findings have key implications for traders and institutions regarding liquidity, arbitrage, and market efficiency. Various metrics are used to benchmark the performance of modified AMMs and to understand the interaction between decentralized and centralized structures. ...

June 10, 2025 · 2 min · Research Team

An Analysis of the Interdependence Between Peanut and Other Agricultural Commodities in China's Futures Market

An Analysis of the Interdependence Between Peanut and Other Agricultural Commodities in China’s Futures Market ArXiv ID: 2501.16697 “View on arXiv” Authors: Unknown Abstract This study analyzes historical data from five agricultural commodities in the Chinese futures market to explore the correlation, cointegration, and Granger causality between Peanut futures and related futures. Multivariate linear regression models are constructed for prices and logarithmic returns, while dynamic relationships are examined using VAR and DCC-EGARCH models. The results reveal a significant dynamic linkage between Peanut and Soybean Oil futures through DCC-EGARCH, whereas the VAR model suggests limited influence from other futures. Additionally, the application of MLP, CNN, and LSTM neural networks for price prediction highlights the critical role of time step configurations in forecasting accuracy. These findings provide valuable insights into the interconnectedness of agricultural futures markets and the efficacy of advanced modeling techniques in financial analysis. ...

January 28, 2025 · 2 min · Research Team

Pairs Trading Using a Novel Graphical Matching Approach

Pairs Trading Using a Novel Graphical Matching Approach ArXiv ID: 2403.07998 “View on arXiv” Authors: Unknown Abstract Pairs trading, a strategy that capitalizes on price movements of asset pairs driven by similar factors, has gained significant popularity among traders. Common practice involves selecting highly cointegrated pairs to form a portfolio, which often leads to the inclusion of multiple pairs sharing common assets. This approach, while intuitive, inadvertently elevates portfolio variance and diminishes risk-adjusted returns by concentrating on a small number of highly cointegrated assets. Our study introduces an innovative pair selection method employing graphical matchings designed to tackle this challenge. We model all assets and their cointegration levels with a weighted graph, where edges signify pairs and their weights indicate the extent of cointegration. A portfolio of pairs is a subgraph of this graph. We construct a portfolio which is a maximum weighted matching of this graph to select pairs which have strong cointegration while simultaneously ensuring that there are no shared assets within any pair of pairs. This approach ensures each asset is included in just one pair, leading to a significantly lower variance in the matching-based portfolio compared to a baseline approach that selects pairs purely based on cointegration. Theoretical analysis and empirical testing using data from the S&P 500 between 2017 and 2023, affirm the efficacy of our method. Notably, our matching-based strategy showcases a marked improvement in risk-adjusted performance, evidenced by a gross Sharpe ratio of 1.23, a significant enhancement over the baseline value of 0.48 and market value of 0.59. Additionally, our approach demonstrates reduced trading costs attributable to lower turnover, alongside minimized single asset risk due to a more diversified asset base. ...

March 12, 2024 · 2 min · Research Team

The puzzle of Carbon Allowance spread

The puzzle of Carbon Allowance spread ArXiv ID: 2405.12982 “View on arXiv” Authors: Unknown Abstract A growing number of contributions in the literature have identified a puzzle in the European carbon allowance (EUA) market. Specifically, a persistent cost-of-carry spread (C-spread) over the risk-free rate has been observed. We are the first to explain the anomalous C-spread with the credit spread of the corporates involved in the emission trading scheme. We obtain statistical evidence that the C-spread is cointegrated with both this credit spread and the risk-free interest rate. This finding has a relevant policy implication: the most effective solution to solve the market anomaly is including the EUA in the list of European Central Bank eligible collateral for refinancing operations. This change in the ECB monetary policy operations would greatly benefit the carbon market and the EU green transition. ...

February 7, 2024 · 2 min · Research Team

ESG driven pairs algorithm for sustainable trading: Analysis from the Indian market

ESG driven pairs algorithm for sustainable trading: Analysis from the Indian market ArXiv ID: 2401.14761 “View on arXiv” Authors: Unknown Abstract This paper proposes an algorithmic trading framework integrating Environmental, Social, and Governance (ESG) ratings with a pairs trading strategy. It addresses the demand for socially responsible investment solutions by developing a unique algorithm blending ESG data with methods for identifying co-integrated stocks. This allows selecting profitable pairs adhering to ESG principles. Further, it incorporates technical indicators for optimal trade execution within this sustainability framework. Extensive back-testing provides evidence of the model’s effectiveness, consistently generating positive returns exceeding conventional pairs trading strategies, while upholding ESG principles. This paves the way for a transformative approach to algorithmic trading, offering insights for investors, policymakers, and academics. ...

January 26, 2024 · 2 min · Research Team

Bayesian Analysis of High Dimensional Vector Error Correction Model

Bayesian Analysis of High Dimensional Vector Error Correction Model ArXiv ID: 2312.17061 “View on arXiv” Authors: Unknown Abstract Vector Error Correction Model (VECM) is a classic method to analyse cointegration relationships amongst multivariate non-stationary time series. In this paper, we focus on high dimensional setting and seek for sample-size-efficient methodology to determine the level of cointegration. Our investigation centres at a Bayesian approach to analyse the cointegration matrix, henceforth determining the cointegration rank. We design two algorithms and implement them on simulated examples, yielding promising results particularly when dealing with high number of variables and relatively low number of observations. Furthermore, we extend this methodology to empirically investigate the constituents of the S&P 500 index, where low-volatility portfolios can be found during both in-sample training and out-of-sample testing periods. ...

December 28, 2023 · 2 min · Research Team

Copula-Based Trading of Cointegrated Cryptocurrency Pairs

Copula-Based Trading of Cointegrated Cryptocurrency Pairs ArXiv ID: 2305.06961 “View on arXiv” Authors: Unknown Abstract This research introduces a novel pairs trading strategy based on copulas for cointegrated pairs of cryptocurrencies. To identify the most suitable pairs, the study employs linear and non-linear cointegration tests along with a correlation coefficient measure and fits different copula families to generate trading signals formulated from a reference asset for analyzing the mispricing index. The strategy’s performance is then evaluated by conducting back-testing for various triggers of opening positions, assessing its returns and risks. The findings indicate that the proposed method outperforms buy-and-hold trading strategies in terms of both profitability and risk-adjusted returns. ...

May 11, 2023 · 2 min · Research Team