false

Network-based diversification of stock and cryptocurrency portfolios

Network-based diversification of stock and cryptocurrency portfolios ArXiv ID: 2408.11739 “View on arXiv” Authors: Unknown Abstract Maintaining a balance between returns and volatility is a common strategy for portfolio diversification, whether investing in traditional equities or digital assets like cryptocurrencies. One approach for diversification is the application of community detection or clustering, using a network representing the relationships between assets. We examine two network representations, one based on a standard distance matrix based on correlation, and another based on mutual information. The Louvain and Affinity propagation algorithms were employed for finding the network communities (clusters) based on annual data. Furthermore, we examine building assets’ co-occurrence networks, where communities are detected for each month throughout a whole year and then the links represent how often assets belong to the same community. Portfolios are then constructed by selecting several assets from each community based on local properties (degree centrality), global properties (closeness centrality), or explained variance (Principal component analysis), with three value ranges (max, med, min), calculated on a maximal spanning tree or a fully connected community sub-graph. We explored these various strategies on data from the S&P 500 and the Top 203 cryptocurrencies with a market cap above 2M USD in the period from Jan 2019 to Sep 2022. Moreover, we study into more details the periods of the beginning of the COVID-19 outbreak and the start of the war in Ukraine. The results confirm some of the previous findings already known for traditional stock markets and provide some further insights, while they reveal an opposing trend in the crypto-assets market. ...

August 21, 2024 · 2 min · Research Team

Topology-Agnostic Detection of Temporal Money Laundering Flows in Billion-Scale Transactions

Topology-Agnostic Detection of Temporal Money Laundering Flows in Billion-Scale Transactions ArXiv ID: 2309.13662 “View on arXiv” Authors: Unknown Abstract Money launderers exploit the weaknesses in detection systems by purposefully placing their ill-gotten money into multiple accounts, at different banks. That money is then layered and moved around among mule accounts to obscure the origin and the flow of transactions. Consequently, the money is integrated into the financial system without raising suspicion. Path finding algorithms that aim at tracking suspicious flows of money usually struggle with scale and complexity. Existing community detection techniques also fail to properly capture the time-dependent relationships. This is particularly evident when performing analytics over massive transaction graphs. We propose a framework (called FaSTMAN), adapted for domain-specific constraints, to efficiently construct a temporal graph of sequential transactions. The framework includes a weighting method, using 2nd order graph representation, to quantify the significance of the edges. This method enables us to distribute complex queries on smaller and densely connected networks of flows. Finally, based on those queries, we can effectively identify networks of suspicious flows. We extensively evaluate the scalability and the effectiveness of our framework against two state-of-the-art solutions for detecting suspicious flows of transactions. For a dataset of over 1 Billion transactions from multiple large European banks, the results show a clear superiority of our framework both in efficiency and usefulness. ...

September 24, 2023 · 2 min · Research Team