false

The Evolution of Probabilistic Price Forecasting Techniques: A Review of the Day-Ahead, Intra-Day, and Balancing Markets

The Evolution of Probabilistic Price Forecasting Techniques: A Review of the Day-Ahead, Intra-Day, and Balancing Markets ArXiv ID: 2511.05523 “View on arXiv” Authors: Ciaran O’Connor, Mohamed Bahloul, Steven Prestwich, Andrea Visentin Abstract Electricity price forecasting has become a critical tool for decision-making in energy markets, particularly as the increasing penetration of renewable energy introduces greater volatility and uncertainty. Historically, research in this field has been dominated by point forecasting methods, which provide single-value predictions but fail to quantify uncertainty. However, as power markets evolve due to renewable integration, smart grids, and regulatory changes, the need for probabilistic forecasting has become more pronounced, offering a more comprehensive approach to risk assessment and market participation. This paper presents a review of probabilistic forecasting methods, tracing their evolution from Bayesian and distribution based approaches, through quantile regression techniques, to recent developments in conformal prediction. Particular emphasis is placed on advancements in probabilistic forecasting, including validity-focused methods which address key limitations in uncertainty estimation. Additionally, this review extends beyond the Day-Ahead Market to include the Intra-Day and Balancing Markets, where forecasting challenges are intensified by higher temporal granularity and real-time operational constraints. We examine state of the art methodologies, key evaluation metrics, and ongoing challenges, such as forecast validity, model selection, and the absence of standardised benchmarks, providing researchers and practitioners with a comprehensive and timely resource for navigating the complexities of modern electricity markets. ...

October 28, 2025 · 2 min · Research Team

Conformal Predictive Portfolio Selection

Conformal Predictive Portfolio Selection ArXiv ID: 2410.16333 “View on arXiv” Authors: Unknown Abstract This study examines portfolio selection using predictive models for portfolio returns. Portfolio selection is a fundamental task in finance, and a variety of methods have been developed to achieve this goal. For instance, the mean-variance approach constructs portfolios by balancing the trade-off between the mean and variance of asset returns, while the quantile-based approach optimizes portfolios by considering tail risk. These methods often depend on distributional information estimated from historical data using predictive models, each of which carries its own uncertainty. To address this, we propose a framework for predictive portfolio selection via conformal prediction , called \emph{“Conformal Predictive Portfolio Selection”} (CPPS). Our approach forecasts future portfolio returns, computes the corresponding prediction intervals, and selects the portfolio of interest based on these intervals. The framework is flexible and can accommodate a wide range of predictive models, including autoregressive (AR) models, random forests, and neural networks. We demonstrate the effectiveness of the CPPS framework by applying it to an AR model and validate its performance through empirical studies, showing that it delivers superior returns compared to simpler strategies. ...

October 19, 2024 · 2 min · Research Team

Postprocessing of point predictions for probabilistic forecasting of day-ahead electricity prices: The benefits of using isotonic distributional regression

Postprocessing of point predictions for probabilistic forecasting of day-ahead electricity prices: The benefits of using isotonic distributional regression ArXiv ID: 2404.02270 “View on arXiv” Authors: Unknown Abstract Operational decisions relying on predictive distributions of electricity prices can result in significantly higher profits compared to those based solely on point forecasts. However, the majority of models developed in both academic and industrial settings provide only point predictions. To address this, we examine three postprocessing methods for converting point forecasts of day-ahead electricity prices into probabilistic ones: Quantile Regression Averaging, Conformal Prediction, and the recently introduced Isotonic Distributional Regression. We find that while the latter demonstrates the most varied behavior, it contributes the most to the ensemble of the three predictive distributions, as measured by Shapley values. Remarkably, the performance of the combination is superior to that of state-of-the-art Distributional Deep Neural Networks over two 4.5-year test periods from the German and Spanish power markets, spanning the COVID pandemic and the war in Ukraine. ...

April 2, 2024 · 2 min · Research Team