false

Representation learning with a transformer by contrastive learning for money laundering detection

Representation learning with a transformer by contrastive learning for money laundering detection ArXiv ID: 2507.08835 “View on arXiv” Authors: Harold Guéneau, Alain Celisse, Pascal Delange Abstract The present work tackles the money laundering detection problem. A new procedure is introduced which exploits structured time series of both qualitative and quantitative data by means of a transformer neural network. The first step of this procedure aims at learning representations of time series through contrastive learning (without any labels). The second step leverages these representations to generate a money laundering scoring of all observations. A two-thresholds approach is then introduced, which ensures a controlled false-positive rate by means of the Benjamini-Hochberg (BH) procedure. Experiments confirm that the transformer is able to produce general representations that succeed in exploiting money laundering patterns with minimal supervision from domain experts. It also illustrates the higher ability of the new procedure for detecting nonfraudsters as well as fraudsters, while keeping the false positive rate under control. This greatly contrasts with rule-based procedures or the ones based on LSTM architectures. ...

July 7, 2025 · 2 min · Research Team

Contrastive Similarity Learning for Market Forecasting: The ContraSim Framework

Contrastive Similarity Learning for Market Forecasting: The ContraSim Framework ArXiv ID: 2502.16023 “View on arXiv” Authors: Unknown Abstract We introduce the Contrastive Similarity Space Embedding Algorithm (ContraSim), a novel framework for uncovering the global semantic relationships between daily financial headlines and market movements. ContraSim operates in two key stages: (I) Weighted Headline Augmentation, which generates augmented financial headlines along with a semantic fine-grained similarity score, and (II) Weighted Self-Supervised Contrastive Learning (WSSCL), an extended version of classical self-supervised contrastive learning that uses the similarity metric to create a refined weighted embedding space. This embedding space clusters semantically similar headlines together, facilitating deeper market insights. Empirical results demonstrate that integrating ContraSim features into financial forecasting tasks improves classification accuracy from WSJ headlines by 7%. Moreover, leveraging an information density analysis, we find that the similarity spaces constructed by ContraSim intrinsically cluster days with homogeneous market movement directions, indicating that ContraSim captures market dynamics independent of ground truth labels. Additionally, ContraSim enables the identification of historical news days that closely resemble the headlines of the current day, providing analysts with actionable insights to predict market trends by referencing analogous past events. ...

February 22, 2025 · 2 min · Research Team

FactorGCL: A Hypergraph-Based Factor Model with Temporal Residual Contrastive Learning for Stock Returns Prediction

FactorGCL: A Hypergraph-Based Factor Model with Temporal Residual Contrastive Learning for Stock Returns Prediction ArXiv ID: 2502.05218 “View on arXiv” Authors: Unknown Abstract As a fundamental method in economics and finance, the factor model has been extensively utilized in quantitative investment. In recent years, there has been a paradigm shift from traditional linear models with expert-designed factors to more flexible nonlinear machine learning-based models with data-driven factors, aiming to enhance the effectiveness of these factor models. However, due to the low signal-to-noise ratio in market data, mining effective factors in data-driven models remains challenging. In this work, we propose a hypergraph-based factor model with temporal residual contrastive learning (FactorGCL) that employs a hypergraph structure to better capture high-order nonlinear relationships among stock returns and factors. To mine hidden factors that supplement human-designed prior factors for predicting stock returns, we design a cascading residual hypergraph architecture, in which the hidden factors are extracted from the residual information after removing the influence of prior factors. Additionally, we propose a temporal residual contrastive learning method to guide the extraction of effective and comprehensive hidden factors by contrasting stock-specific residual information over different time periods. Our extensive experiments on real stock market data demonstrate that FactorGCL not only outperforms existing state-of-the-art methods but also mines effective hidden factors for predicting stock returns. ...

February 5, 2025 · 2 min · Research Team

Dynamic Graph Representation with Contrastive Learning for Financial Market Prediction: Integrating Temporal Evolution and Static Relations

Dynamic Graph Representation with Contrastive Learning for Financial Market Prediction: Integrating Temporal Evolution and Static Relations ArXiv ID: 2412.04034 “View on arXiv” Authors: Unknown Abstract Temporal Graph Learning (TGL) is crucial for capturing the evolving nature of stock markets. Traditional methods often ignore the interplay between dynamic temporal changes and static relational structures between stocks. To address this issue, we propose the Dynamic Graph Representation with Contrastive Learning (DGRCL) framework, which integrates dynamic and static graph relations to improve the accuracy of stock trend prediction. Our framework introduces two key components: the Embedding Enhancement (EE) module and the Contrastive Constrained Training (CCT) module. The EE module focuses on dynamically capturing the temporal evolution of stock data, while the CCT module enforces static constraints based on stock relations, refined within contrastive learning. This dual-relation approach allows for a more comprehensive understanding of stock market dynamics. Our experiments on two major U.S. stock market datasets, NASDAQ and NYSE, demonstrate that DGRCL significantly outperforms state-of-the-art TGL baselines. Ablation studies indicate the importance of both modules. Overall, DGRCL not only enhances prediction ability but also provides a robust framework for integrating temporal and relational data in dynamic graphs. Code and data are available for public access. ...

December 5, 2024 · 2 min · Research Team

Contrastive Learning of Asset Embeddings from Financial Time Series

Contrastive Learning of Asset Embeddings from Financial Time Series ArXiv ID: 2407.18645 “View on arXiv” Authors: Unknown Abstract Representation learning has emerged as a powerful paradigm for extracting valuable latent features from complex, high-dimensional data. In financial domains, learning informative representations for assets can be used for tasks like sector classification, and risk management. However, the complex and stochastic nature of financial markets poses unique challenges. We propose a novel contrastive learning framework to generate asset embeddings from financial time series data. Our approach leverages the similarity of asset returns over many subwindows to generate informative positive and negative samples, using a statistical sampling strategy based on hypothesis testing to address the noisy nature of financial data. We explore various contrastive loss functions that capture the relationships between assets in different ways to learn a discriminative representation space. Experiments on real-world datasets demonstrate the effectiveness of the learned asset embeddings on benchmark industry classification and portfolio optimization tasks. In each case our novel approaches significantly outperform existing baselines highlighting the potential for contrastive learning to capture meaningful and actionable relationships in financial data. ...

July 26, 2024 · 2 min · Research Team