false

Dynamic Inverse Optimization under Drift and Shocks: Theory, Regret Bounds, and Applications

Dynamic Inverse Optimization under Drift and Shocks: Theory, Regret Bounds, and Applications ArXiv ID: 2509.14080 “View on arXiv” Authors: JINHO CHA Abstract The growing prevalence of drift and shocks in modern decision environments exposes a gap between classical optimization theory and real-world practice. Standard models assume fixed objectives, yet organizations from hospitals to power grids routinely adapt to shifting priorities, noisy data, and abrupt disruptions. To address this gap, this study develops a dynamic inverse optimization framework that recovers hidden, time-varying preferences from observed allocation trajectories. The framework unifies identifiability analysis with regret guarantees conditions are established for existence and uniqueness of recovered parameters, and sharp static and dynamic regret bounds are derived to characterize responsiveness to gradual drift and sudden shocks. Methodologically, a drift-aware estimator grounded in convex analysis and online learning theory is introduced, with finite-sample guarantees on recovery accuracy. Computational experiments in healthcare, energy, logistics, and finance reveal heterogeneous recovery patterns, ranging from rapid resilience to persistent vulnerability. Overall, dynamic inverse optimization emerges as both a theoretical contribution and a broadly applicable diagnostic tool for benchmarking resilience, uncovering hidden behavioral shifts, and guiding policy interventions in complex stochastic systems. ...

September 17, 2025 · 2 min · Research Team

Broker-Trader Partial Information Nash-Equilibria

Broker-Trader Partial Information Nash-Equilibria ArXiv ID: 2412.17712 “View on arXiv” Authors: Unknown Abstract We study partial information Nash equilibrium between a broker and an informed trader. In this setting, the informed trader, who possesses knowledge of a trading signal, trades multiple assets with the broker in a dealer market. Simultaneously, the broker offloads these assets in a lit exchange where their actions impact the asset prices. The broker, however, only observes aggregate prices and cannot distinguish between underlying trends and volatility. Both the broker and the informed trader aim to maximize their penalized expected wealth. Using convex analysis, we characterize the Nash equilibrium and demonstrate its existence and uniqueness. Furthermore, we establish that this equilibrium corresponds to the solution of a nonstandard system of forward-backward stochastic differential equations (FBSDEs) that involves the two differing filtrations. For short enough time horizons, we prove that a unique solution of this system exists. Finally, under quite general assumptions, we show that the solution to the FBSDE system admits a polynomial approximation in the strength of the transient impact to arbitrary order, and prove that the error is controlled. ...

December 23, 2024 · 2 min · Research Team