false

Parrondo's effects with aperiodic protocols

Parrondo’s effects with aperiodic protocols ArXiv ID: 2410.02987 “View on arXiv” Authors: Unknown Abstract In this work, we study the effectiveness of employing archetypal aperiodic sequencing – namely Fibonacci, Thue-Morse, and Rudin-Shapiro – on the Parrondian effect. From a capital gain perspective, our results show that these series do yield a Parrondo’s Paradox with the Thue-Morse based strategy outperforming not only the other two aperiodic strategies but benchmark Parrondian games with random and periodical ($AABBAABB\ldots$) switching as well. The least performing of the three aperiodic strategies is the Rudin-Shapiro. To elucidate the underlying causes of these results, we analyze the cross-correlation between the capital generated by the switching protocols and that of the isolated losing games. This analysis reveals that a strong anticorrelation with both isolated games is typically required to achieve a robust manifestation of Parrondo’s effect. We also study the influence of the sequencing on the capital using the lacunarity and persistence measures. In general, we observe that the switching protocols tend to become less performing in terms of the capital as one increases the persistence and thus approaches the features of an isolated losing game. For the (log-)lacunarity, a property related to heterogeneity, we notice that for small persistence (less than 0.5) the performance increases with the lacunarity with a maximum around 0.4. In respect of this, our work shows that the optimization of a switching protocol is strongly dependent on a fine-tuning between persistence and heterogeneity. ...

October 3, 2024 · 2 min · Research Team

Joint multifractality in the cross-correlations between grains & oilseeds indices and external uncertainties

Joint multifractality in the cross-correlations between grains & oilseeds indices and external uncertainties ArXiv ID: 2410.02798 “View on arXiv” Authors: Unknown Abstract This study investigates the relationships between agricultural spot markets and external uncertainties via the multifractal detrending moving-average cross-correlation analysis (MF-X-DMA). The dataset contains the Grains & Oilseeds Index (GOI) and its five sub-indices of wheat, maize, soyabeans, rice, and barley. Moreover, we use three uncertainty proxies, namely, economic policy uncertainty (EPU), geopolitical risk (GPR), and volatility Index (VIX). We observe the presence of multifractal cross-correlations between agricultural markets and uncertainties. Further, statistical tests show that maize has intrinsic joint multifractality with all the uncertainty proxies, exhibiting a high degree of sensitivity. Additionally, intrinsic multifractality among GOI-GPR, wheat-GPR and soyabeans-VIX is illustrated. However, other series have apparent multifractal cross-correlations with high possibilities. Moreover, our analysis suggests that among the three kinds of external uncertainties, geopolitical risk has a relatively stronger association with grain prices. ...

September 18, 2024 · 2 min · Research Team

NYSE Price Correlations Are Abitrageable Over Hours and Predictable Over Years

NYSE Price Correlations Are Abitrageable Over Hours and Predictable Over Years ArXiv ID: 2305.08241 “View on arXiv” Authors: Unknown Abstract Trade prices of about 1000 New York Stock Exchange-listed stocks are studied at one-minute time resolution over the continuous five year period 2018–2022. For each stock, in dollar-volume-weighted transaction time, the discrepancy from a Brownian-motion martingale is measured on timescales of minutes to several days. The result is well fit by a power-law shot-noise (or Gaussian) process with Hurst exponent 0.465, that is, slightly mean-reverting. As a check, we execute an arbitrage strategy on simulated Hurst-exponent data, and a comparable strategy in backtesting on the actual data, obtaining similar results (annualized returns $\sim 60$% if zero transaction costs). Next examining the cross-correlation structure of the $\sim 1000$ stocks, we find that, counterintuitively, correlations increase with time lag in the range studied. We show that this behavior that can be quantitatively explained if the mean-reverting Hurst component of each stock is uncorrelated, i.e., does not share that stock’s overall correlation with other stocks. Overall, we find that $\approx 45$% of a stock’s 1-hour returns variance is explained by its particular correlations to other stocks, but that most of this is simply explained by the movement of all stocks together. Unexpectedly, the fraction of variance explained is greatest when price volatility is high, for example during COVID-19 year 2020. An arbitrage strategy with cross-correlations does significantly better than without (annualized returns $\sim 100$% if zero transaction costs). Measured correlations from any single year in 2018–2022 are about equally good in predicting all the other years, indicating that an overall correlation structure is persistent over the whole period. ...

May 14, 2023 · 3 min · Research Team