false

Physics-Informed Singular-Value Learning for Cross-Covariances Forecasting in Financial Markets

Physics-Informed Singular-Value Learning for Cross-Covariances Forecasting in Financial Markets ArXiv ID: 2601.07687 “View on arXiv” Authors: Efstratios Manolakis, Christian Bongiorno, Rosario Nunzio Mantegna Abstract A new wave of work on covariance cleaning and nonlinear shrinkage has delivered asymptotically optimal analytical solutions for large covariance matrices. Building on this progress, these ideas have been generalized to empirical cross-covariance matrices, whose singular-value shrinkage characterizes comovements between one set of assets and another. Existing analytical cross-covariance cleaners are derived under strong stationarity and large-sample assumptions, and they typically rely on mesoscopic regularity conditions such as bounded spectra; macroscopic common modes (e.g., a global market factor) violate these conditions. When applied to real equity returns, where dependence structures drift over time and global modes are prominent, we find that these theoretically optimal formulas do not translate into robust out-of-sample performance. We address this gap by designing a random-matrix-inspired neural architecture that operates in the empirical singular-vector basis and learns a nonlinear mapping from empirical singular values to their corresponding cleaned values. By construction, the network can recover the analytical solution as a special case, yet it remains flexible enough to adapt to non-stationary dynamics and mode-driven distortions. Trained on a long history of equity returns, the proposed method achieves a more favorable bias-variance trade-off than purely analytical cleaners and delivers systematically lower out-of-sample cross-covariance prediction errors. Our results demonstrate that combining random-matrix theory with machine learning makes asymptotic theories practically effective in realistic time-varying markets. ...

January 12, 2026 · 2 min · Research Team

Dissecting Multifractal detrended cross-correlation analysis

Dissecting Multifractal detrended cross-correlation analysis ArXiv ID: 2406.19406 “View on arXiv” Authors: Unknown Abstract In this work we address the question of the Multifractal detrended cross-correlation analysis method that has been subject to some controversies since its inception almost two decades ago. To this end we propose several new options to deal with negative cross-covariance among two time series, that may serve to construct a more robust view of the multifractal spectrum among the series. We compare these novel options with the proposals already existing in the literature, and we provide fast code in C, R and Python for both new and the already existing proposals. We test different algorithms on synthetic series with an exact analytical solution, as well as on daily price series of ethanol and sugar in Brazil from 2010 to 2023. ...

June 9, 2024 · 2 min · Research Team